18 resultados para Juigné, Antoine Éléonore Léon Leclerc de, abp. of Paris, 1728-1811.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure of Arabidopsis thaliana to ozone results in the expression of a number of defense-related genes that are also induced during a hypersensitive response. A potential common link between the activation of defense gene expression during a hypersensitive response and by ozone treatment is the production of active oxygen species and the accumulation of hydrogen peroxide. Here we report that salicylic acid accumulation, which can be induced by hydrogen peroxide and is required for the expression of both a hypersensitive response and systemic acquired resistance, is also required for the induction of some, but not all, ozone-induced mRNAs examined. In addition, we show that ozone exposure triggers induced resistance of A. thaliana to infection with virulent phytopathogenic Pseudomonas syringae strains. Infection of transgenic plants expressing salicylate hydroxylase, which prevents the accumulation of salicylic acid, or npr1 mutant plants, which are defective in the expression of systemic acquired resistance at a step downstream of salicylic acid, demonstrated that the signaling pathway activated during ozone-induced resistance overlaps with the systemic acquired resistance activation pathway and is salicylic acid dependent. Interestingly, plants expressing salicylate hydroxylase exhibited increased sensitivity to ozone exposure. These results demonstrate that ozone activates at least two distinct signaling pathways, including a salicylic acid dependent pathway previously shown to be associated with the activation of pathogen defense reactions, and that this latter pathway also induces a protective response to ozone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Holocarboxylase synthetase (HCS) catalyzes the biotinylation of the four biotin-dependent carboxylases in human cells. Patients with HCS deficiency lack activity of all four carboxylases, indicating that a single HCS is targeted to the mitochondria and cytoplasm. We isolated 21 human HCS cDNA clones, in four size classes of 2.0-4.0 kb, by complementation of an Escherichia coli birA mutant defective in biotin ligase. Expression of the cDNA clones promoted biotinylation of the bacterial biotinyl carboxyl carrier protein as well as a carboxyl-terminal fragment of the alpha subunit of human propionyl-CoA carboxylase expressed from a plasmid. The open reading frame encodes a predicted protein of 726 aa and M(r) 80,759. Northern blot analysis revealed the presence of a 5.8-kb major species and 4.0-, 4.5-, and 8.5-kb minor species of poly(A)+ RNA in human tissues. Human HCS shows specific regions of homology with the BirA protein of E. coli and the presumptive biotin ligase of Paracoccus denitrificans. Several forms of HCS mRNA are generated by alternative splicing, and as a result, two mRNA molecules bear different putative translation initiation sites. A sequence upstream of the first translation initiation site encodes a peptide structurally similar to mitochondrial presequences, but it lacks an in-frame ATG codon to direct its translation. We anticipate that alternative splicing most likely mediates the mitochondrial versus cytoplasmic expression, although the elements required for directing the enzyme to the mitochondria remain to be confirmed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The predominant localization of the major auxin-binding protein (ABP1) of maize is within the lumen of the endoplasmic reticulum. Nevertheless, all the electrophysiological evidence supporting a receptor role for ABP1 implies that a functionally important fraction of the protein must reside at the outer face of the plasma membrane. Using methods of protoplast preparation designed to minimize proteolysis, we report the detection of ABP at the surface of maize coleoptile protoplasts by the technique of silver-enhanced immunogold viewed by epipolarization microscopy. We also show that ABP clusters following auxin treatment and that this response is temperature-dependent and auxin-specific.