119 resultados para Intron
Resumo:
Two issues in the evolution of the intron/exon structure of genes are the role of exon shuffling and the origin of introns. Using a large data base of eukaryotic intron-containing genes, we have found that there are correlations between intron phases leading to an excess of symmetric exons and symmetric exon sets. We interpret these excesses as manifestations of exon shuffling and make a conservative estimate that at least 19% of the exons in the data base were involved in exon shuffling, suggesting an important role for exon shuffling in evolution. Furthermore, these excesses of symmetric exons appear also in those regions of eukaryotic genes that are homologous to prokaryotic genes: the ancient conserved regions. This last fact cannot be explained in terms of the insertional theory of introns but rather supports the concept that some of the introns were ancient, the exon theory of genes.
Resumo:
Mutations in the human phosphofructokinase muscle subunit gene (PFKM) are known to cause myopathy classified as glycogenosis type VII (Tarui disease). Previously described molecular defects include base substitutions altering encoded amino acids or resulting in abnormal splicing. We report a mutation resulting in phosphofructokinase deficiency in three patients from an Ashkenazi Jewish family. Using a reverse transcription PCR assay, PFKM subunit transcripts differing by length were detected in skeletal muscle tissue of all three affected subjects. In the longer transcript, an insertion of 252 nucleotides totally homologous to the structure of the 10th intron of the PFKM gene was found separating exon 10 from exon 11. In addition, two single base transitions were identified by direct sequencing: [exon 6; codon 95; CGA (Arg) to TGA (stop)] and [exon 7; codon 172; ACC (Thr) to ACT (Thr)] in either transcript. Single-stranded conformational polymorphism and restriction enzyme analyses confirmed the presence of these point substitutions in genomic DNA and strongly suggested homozygosity for the pathogenic allele. The nonsense mutation at codon 95 appeared solely responsible for the phenotype in these patients, further expanding genetic heterogeneity of Tarui disease. Transcripts with and without intron 10 arising from identical mutant alleles probably resulted from differential pre-mRNA processing and may represent a novel message from the PFKM gene.
Resumo:
The gene encoding the glycolytic enzyme triose-phosphate isomerase (TPI; EC 5.3.1.1) has been central to the long-standing controversy on the origin and evolutionary significance of spliceosomal introns by virtue of its pivotal support for the introns-early view, or exon theory of genes. Putative correlations between intron positions and TPI protein structure have led to the conjecture that the gene was assembled by exon shuffling, and five TPI intron positions are old by the criterion of being conserved between animals and plants. We have sequenced TPI genes from three diverse eukaryotes--the basidiomycete Coprinus cinereus, the nematode Caenorhabditis elegans, and the insect Heliothis virescens--and have found introns at seven novel positions that disrupt previously recognized gene/protein structure correlations. The set of 21 TPI introns now known is consistent with a random model of intron insertion. Twelve of the 21 TPI introns appear to be of recent origin since each is present in but a single examined species. These results, together with their implication that as more TPI genes are sequenced more intron positions will be found, render TPI untenable as a paradigm for the introns-early theory and, instead, support the introns-late view that spliceosomal introns have been inserted into preexisting genes during eukaryotic evolution.
Resumo:
We have identified an antigen recognized on a human melanoma by autologous cytolytic T lymphocytes. It is encoded by a gene that is expressed in many normal tissues. Remarkably, the sequence coding for the antigenic peptide is located across an exon-intron junction. A point mutation is present in the intron that generates an amino acid change that is essential for the recognition of the peptide by the anti-tumor cytotoxic T lymphocytes. This observation suggests that the T-cell-mediated surveillance of the integrity of the genome may extend to some intronic regions.
Resumo:
Domain 5 (D5) is a small hairpin structure within group II introns. A bimolecular assay system depends on binding by D5 to an intron substrate for self-splicing activity. In this study, mutations in D5 identify two among six nearly invariant nucleotides as being critical for 5' splice junction hydrolysis but unimportant for binding. A mutation at another site in D5 blocks binding. Thus, mutations can distinguish two D5 functions: substrate binding and catalysis. The secondary structure of D5 may resemble helix I formed by the U2 and U6 small nuclear RNAs in the eukaryotic spliceosome. Our results support a revision of the previously proposed correspondence between D5 and helix I on the basis of the critical trinucleotide 5'-AGC-3' present in both. We suggest that this trinucleotide plays a similar role in promoting the chemical reactions for both splicing systems.
Resumo:
We describe the complete chemical synthesis of a ribozyme that catalyzes template-directed oligonucleotide ligation. The specific activity of the synthetic ribozyme is nearly identical to that of the same enzyme generated by in vitro transcription with T7 RNA polymerase. The ribozyme is derived from a group I intron and consists of three RNA fragments of 36, 43, and 59 nt that self-assemble to form a catalytically active complex. We have site-specifically substituted ribonucleotide analogs into this enzyme and have identified two 2'-hydroxyl groups that are required for full catalytic activity. In contrast, neither the 2'-hydroxyl nor the exocyclic amino group of the conserved guanosine in the guanosine binding site is necessary for catalysis. By allowing the ribozyme to be modified as easily as its substrates, this synthetic ribozyme system should be useful for testing specific hypotheses concerning ribozyme-substrate interactions and tertiary interactions within the ribozyme.
Resumo:
Nrd1 is an essential yeast protein of unknown function that has an RNA recognition motif (RRM) in its carboxyl half and a putative RNA polymerase II-binding domain, the CTD-binding motif, at its amino terminus. Nrd1 mediates a severe reduction in pre-mRNA production from a reporter gene bearing an exogenous sequence element in its intron. The effect of the inserted element is highly sequence-specific and is accompanied by the appearance of 3′-truncated transcripts. We have proposed that Nrd1 binds to the exogenous sequence element in the nascent pre-mRNA during transcription, aided by the CTD-binding motif, and directs 3′-end formation a short distance downstream. Here we show that highly purified Nrd1 carboxyl half binds tightly to the RNA element in vitro with sequence specificity that correlates with the efficiency of cis-element-directed down-regulation in vivo. A large deletion in the CTD-binding motif blocks down-regulation but does not affect the essential function of Nrd1. Furthermore, a nonsense mutant allele that produces truncated Nrd1 protein lacking the RRM has a dominant-negative effect on down-regulation but not on cell growth. Viability of this and several other nonsense alleles of Nrd1 appears to require translational readthrough, which in one case is extremely efficient. Thus the CTD-binding motif of Nrd1 is important for pre-mRNA down-regulation but is not required for the essential function of Nrd1. In contrast, the RNA-binding activity of Nrd1 appears to be required both for down-regulation and for its essential function.
Resumo:
We describe a gene from Drosophila melanogaster related to the alpha-amylase gene Amy. This gene, which exists as a single copy, was named Amyrel. It is strikingly divergent from Amy because the amino acid divergence is 40%. The coding sequence is interrupted by a short intron at position 655, which is unusual in amylase genes. Amyrel has also been cloned in Drosophila ananassae, Drosophila pseudoobscura, and Drosophila subobscura and is likely to be present throughout the Sophophora subgenus, but, to our knowledge, it has not been detected outside. Unexpectedly, there is a strong conservation of 5′ and 3′ flanking regions between Amyrel genes from different species, which is not the case for Amy and which suggests that selection acts on these regions. In contrast to the Amy genes, Amyrel is transcribed in larvae of D. melanogaster but not in adults. However, the protein has not been detected yet. Amyrel evolves about twice as fast as Amy in the several species studied. We suggest that this gene could result from a duplication of Amy followed by accelerated and selected divergence toward a new adaptation.
Resumo:
The KARP-1 (Ku86 Autoantigen Related Protein-1) gene, which is expressed from the human Ku86 autoantigen locus, appears to play a role in mammalian DNA double-strand break repair as a regulator of the DNA-dependent protein kinase complex. Here we demonstrate that KARP-1 gene expression is significantly up-regulated following exposure of cells to DNA damage. KARP-1 mRNA induction was completely dependent on the ataxia telangiectasia and p53 gene products, consistent with the presence of a p53 binding site within the second intron of the KARP-1 locus. These observations link ataxia telangiectasia, p53, and KARP-1 in a common pathway.
Resumo:
Familial multiple system tauopathy with presenile dementia (MSTD) is a neurodegenerative disease with an abundant filamentous tau protein pathology. It belongs to the group of familial frontotemporal dementias with Parkinsonism linked to chromosome 17 (FTDP-17), a major class of inherited dementing disorders whose genetic basis is unknown. We now report a G to A transition in the intron following exon 10 of the gene for microtubule-associated protein tau in familial MSTD. The mutation is located at the 3′ neighboring nucleotide of the GT splice-donor site and disrupts a predicted stem-loop structure. We also report an abnormal preponderance of soluble tau protein isoforms with four microtubule-binding repeats over isoforms with three repeats in familial MSTD. This most likely accounts for our previous finding that sarkosyl-insoluble tau protein extracted from the filamentous deposits in familial MSTD consists only of tau isoforms with four repeats. These findings reveal that a departure from the normal ratio of four-repeat to three-repeat tau isoforms leads to the formation of abnormal tau filaments. The results show that dysregulation of tau protein production can cause neurodegeneration and imply that the FTDP-17 gene is the tau gene. This work has major implications for Alzheimer’s disease and other tauopathies.
Resumo:
Carnitine octanoyltransferase (COT) transports medium-chain fatty acids through the peroxisome. During isolation of a COT clone from a rat liver library, a cDNA in which exon 2 was repeated, was characterized. Reverse transcription-PCR amplifications of total RNAs from rat liver showed a three-band pattern. Sequencing of the fragments revealed that, in addition to the canonical exon organization, previously reported [Choi, S. J. et al. (1995) Biochim. Biophys. Acta 1264, 215–222], there were two other forms in which exon 2 or exons 2 and 3 were repeated. The possibility of this exonic repetition in the COT gene was ruled out by genomic Southern blot. To study the gene expression, we analyzed RNA transcripts by Northern blot after RNase H digestion of total RNA. Three different transcripts were observed. Splicing experiments also were carried out in vitro with different constructs that contain exon 2 plus the 5′ or the 3′ adjacent intron sequences. Our results indicate that accurate joining of two exons 2 occurs by a trans-splicing mechanism, confirming the potential of these structures for this process in nature. The trans-splicing can be explained by the presence of three exon-enhancer sequences in exon 2. Analysis by Western blot of the COT proteins by using specific antibodies showed that two proteins corresponding to the expected Mr are present in rat peroxisomes. This is the first time that a natural trans-splicing reaction has been demonstrated in mammalian cells.
Resumo:
Expression of the γ-aminobutyric acid type A receptor α6 subunit gene is restricted to differentiated granule cells of the cerebellum and cochlear nucleus. The mechanisms underlying this limited expression are unknown. Here we have characterized the expression of a series of α6-based transgenes in adult mouse brain. A DNA fragment containing a 1-kb portion upstream of the start site(s), together with exons 1–8, can direct high-level cerebellar granule cell-specific reporter gene expression. Thus powerful granule cell-specific determinants reside within the 5′ half of the α6 subunit gene body. This intron-containing transgene appears to lack the cochlear nucleus regulatory elements. It therefore provides a cassette to deliver gene products solely to adult cerebellar granule cells.
Resumo:
Podospora anserina is a filamentous fungus with a limited life span. Life span is controlled by nuclear and extranuclear genetic traits. Herein we report the nature of four alterations in the nuclear gene grisea that lead to an altered morphology, a defect in the formation of female gametangia, and an increased life span. Three sequence changes are located in the 5′ upstream region of the grisea ORF. One mutation is a G → A transition at the 5′ splice site of the single intron of the gene, leading to a RNA splicing defect. This loss-of-function affects the amplification of the first intron of the mitochondrial cytochrome c oxidase subunit I gene (COI) and the specific mitochondrial DNA rearrangements that occur during senescence of wild-type strains. Our results indicate that the nuclear gene grisea is part of a molecular machinery involved in the control of mitochondrial DNA reorganizations. These DNA instabilities accelerate but are not a prerequisite for the aging of P. anserina cultures.
Resumo:
Panhandle PCR amplifies genomic DNA with known 5′ and unknown 3′ sequences from a template with an intrastrand loop schematically shaped like a pan with a handle. We used panhandle PCR to clone MLL genomic breakpoints in two pediatric treatment-related leukemias. The karyotype in a case of treatment-related acute lymphoblastic leukemia showed the t(4;11)(q21;q23). Panhandle PCR amplified the translocation breakpoint at position 2158 in intron 6 in the 5′ MLL breakpoint cluster region (bcr). The karyotype in a case of treatment-related acute myeloid leukemia was normal, but Southern blot analysis showed a single MLL gene rearrangement. Panhandle PCR amplified the breakpoint at position 1493 in MLL intron 6. Screening of somatic cell hybrid and radiation hybrid DNAs by PCR and reverse transcriptase-PCR analysis of the leukemic cells indicated that panhandle PCR identified a fusion of MLL intron 6 with a previously uncharacterized sequence in MLL intron 1, consistent with a partial duplication. In both cases, the breakpoints in the MLL bcr were in Alu repeats, and there were Alu repeats in proximity to the breakpoints in the partner DNAs, suggesting that Alu sequences were relevant to these rearrangements. This study shows that panhandle PCR is an effective method for cloning MLL genomic breakpoints in treatment-related leukemias. Analysis of additional pediatric cases will determine whether breakpoint distribution deviates from the predilection for 3′ distribution in the bcr that has been found in adult cases.
Resumo:
The Saccharomyces cerevisiae genes PRP2, PRP16, and PRP22 encode pre-mRNA splicing factors that belong to the highly conserved “DEAH” family of putative RNA helicases. We previously identified two additional members of this family, JA1 and JA2. To investigate its biological function, we cloned the JA1 gene and generated alleles carrying mutations identical to those found in highly conserved regions of other members of the DEAH family. A ja1 allele carrying a mutation identical to that in the temperature-sensitive (ts) prp22–1 gene conferred ts phenotype when integrated into the genome of a wild-type strain by gene replacement. Northern analysis of RNA obtained from the ts strain shifted to a nonpermissive temperature revealed accumulation of unspliced pre-mRNAs and excised intron lariats. Furthermore, analysis of splicing complexes showed that intron lariats accumulated in spliceosomes. The results presented indicate that JA1 encodes a pre-mRNA processing factor (Prp) involved in disassembly of spliceosomes after the release of mature mRNA. We have therefore renamed this gene PRP43.