117 resultados para Intercluster Filaments


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both the bacterial RecA protein and the eukaryotic Rad51 protein form helical nucleoprotein filaments on DNA that catalyze strand transfer between two homologous DNA molecules. However, only the ATP-binding cores of these proteins have been conserved, and this same core is also found within helicases and the F1-ATPase. The C-terminal domain of the RecA protein forms lobes within the helical RecA filament. However, the Rad51 proteins do not have the C-terminal domain found in RecA, but have an N-terminal extension that is absent in the RecA protein. Both the RecA C-terminal domain and the Rad51 N-terminal domain bind DNA. We have used electron microscopy to show that the lobes of the yeast and human Rad51 filaments appear to be formed by N-terminal domains. These lobes are conformationally flexible in both RecA and Rad51. Within RecA filaments, the change between the “active” and “inactive” states appears to mainly involve a large movement of the C-terminal lobe. The N-terminal domain of Rad51 and the C-terminal domain of RecA may have arisen from convergent evolution to play similar roles in the filaments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Escherichia coli RecA protein, in the presence of ATP or its analog adenosine 5'-[gamma-thio]triphosphate, polymerizes on single-stranded DNA to form nucleoprotein filaments that can then bind to homologous sequences on duplex DNA. The three-stranded joint molecule formed as a result of this binding event is a key intermediate in general recombination. We have used affinity cleavage to examine this three-stranded joint by incorporating a single thymidine-EDTA.Fe (T*) into the oligonucleotide part of the filament. Our analysis of the cleavage patterns from the joint molecule reveals that the nucleoprotein filament binds in the minor groove of an extended Watson-Crick duplex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mouse monoclonal antibody, G92.1.2, raised against guinea pig liver transglutaminase (TGase) recognizes an antigen present in primary mouse dermal fibroblasts. A filamentous pattern, bearing remarkable similarity to the vimentin intermediate filament (IF) network, is seen when these cells are fixed and processed for indirect immunofluorescence with the antibody. Double-label immunofluorescence reveals that the antigen reacting with the antibody colocalizes precisely with vimentin IF and that this colocalization is retained after the treatment of fibroblasts with colchicine, which induces a redistribution of the majority of IFs into perinuclear aggregates. These morphological observations are further supported by the finding that the protein reacting with G92.1.2 is retained in IF-enriched cytoskeletal preparations made by using nonionic detergent-containing high ionic strength solutions. Western blots of the IF fraction show that G92.1.2 recognizes a major band of approximately 280 kDa and does not cross react with vimentin. Furthermore, when the antibody is microinjected into live dermal fibroblasts, it causes a collapse of the vimentin IF network in the majority of injected cells. The results suggest that a form of TGase, or a TGase-related antigen, is closely associated with the vimentin IF network of primary cultures of mouse dermal fibroblasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A selective polyclonal antibody directed toward the C-terminal decapeptide common to the alpha subunits of Gq and G11 G proteins (G alpha q/G alpha 11) was prepared and used to investigate the subcellular distribution fo these proteins in WRK1 cells, a rat mammary tumor cell line. In immunoblots, the antibody recognized purified G alpha q and G alpha 11 proteins and labeled only two bands corresponding to these alpha subunits. Functional studies indicated that this antibody inhibited vasopressin- and guanosine 5'-[alpha-thio]triphosphate-sensitive phospholipase C activities. Immunofluorescence experiments done with this antibody revealed a filamentous labeling corresponding to intracytoplasmic and perimembranous actin-like filament structures. Colocalization of G alpha q/G alpha 11 and F-actin filaments (F-actin) was demonstrated by double-labeling experiments with anti-G alpha q/G alpha 11 and anti-actin antibodies. Immunoblot analysis of membrane, cytoskeletal, and F-actin-rich fractions confirmed the close association of G alpha q/G alpha 11 with actin. Large amounts of G alpha q/G alpha 11 were recovered in the desmin- and tubulin-free F-actin-rich fraction obtained by a double depolymerization-repolymerization cycle. Disorganization of F-actin filaments with cytochalasin D preserved G alpha q/G alpha 11 and F-actin colocalization but partially inhibited vasopressin- and fluoroaluminate-sensitive phospholipase C activity, suggesting that actin-associated G alpha q/G alpha 11 proteins play a role in signal transduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the hallmarks of Alzheimer disease is the pathological aggregation of tau protein into paired helical filaments (PHFs) and neurofibrillary tangles. Here we describe the in vitro assembly of recombinant tau protein and constructs derived from it into PHFs. Though whole tau assembled poorly, constructs containing three internal repeats (corresponding to the fetal tau isoform) formed PHFs reproducibly. This ability depended on intermolecular disulfide bridges formed by the single Cys-322. Blocking the SH group, mutating Cys for Ala, or keeping tau in a reducing environment all inhibited assembly. With constructs derived from four-repeat tau (having the additional repeat no. 2 and a second Cys-291), PHF assembly was blocked because Cys-291 and Cys-322 interact within the molecule. PHF assembly was enabled again by mutating Cys-291 for Ala. The synthetic PHFs bound the dye thioflavin S used in Alzheimer disease diagnostics. The data imply that the redox potential in the neuron is crucial for PHF assembly, independently or in addition to pathological phosphorylation reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have been able to convert a small α/β protein, acylphosphatase, from its soluble and native form into insoluble amyloid fibrils of the type observed in a range of pathological conditions. This was achieved by allowing slow growth in a solution containing moderate concentrations of trifluoroethanol. When analyzed with electron microscopy, the protein aggregate present in the sample after long incubation times consisted of extended, unbranched filaments of 30–50 Å in width that assemble subsequently into higher order structures. This fibrillar material possesses extensive β-sheet structure as revealed by far-UV CD and IR spectroscopy. Furthermore, the fibrils exhibit Congo red birefringence, increased fluorescence with thioflavine T and cause a red-shift of the Congo red absorption spectrum. All of these characteristics are typical of amyloid fibrils. The results indicate that formation of amyloid occurs when the native fold of a protein is destabilized under conditions in which noncovalent interactions, and in particular hydrogen bonding, within the polypeptide chain remain favorable. We suggest that amyloid formation is not restricted to a small number of protein sequences but is a property common to many, if not all, natural polypeptide chains under appropriate conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated actin cytoskeletal and adhesion molecule dynamics during collisions of leading lamellae of nontransformed and oncogene-transformed fibroblasts. By using real-time video microscopy, it was found that during lamellar collision there was considerable overlapping of leading lamellae followed by subsequent retraction. Overlapping of nontransformed fibroblasts was accompanied by formation of β-catenin-positive contact structures organized into strands oriented parallel to the long axis of the cell that were associated with bundles of actin filaments. Maintenance of such cell–cell contact structures critically depended on the contractility of actin cytoskeleton, as inhibition of contractility with serum-free medium or 2,3-butanedione 2-monoxime (BDM) resulted in loss of strand formation. Strand formation was recovered when cells in serum-free medium were incubated with the microtubule inhibitor nocodazole, which is known to increase contractility. Oncogene-transformed fibroblasts reacted to collisions with responses similar to nontransformed fibroblasts but did not develop well-organized cell–cell contacts. A model is presented to describe how differences in the organization of the actin cytoskeleton could account for the structurally distinct responses to cell–cell contact by polarized fibroblastic cells versus nonpolarized epithelial cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Familial multiple system tauopathy with presenile dementia (MSTD) is a neurodegenerative disease with an abundant filamentous tau protein pathology. It belongs to the group of familial frontotemporal dementias with Parkinsonism linked to chromosome 17 (FTDP-17), a major class of inherited dementing disorders whose genetic basis is unknown. We now report a G to A transition in the intron following exon 10 of the gene for microtubule-associated protein tau in familial MSTD. The mutation is located at the 3′ neighboring nucleotide of the GT splice-donor site and disrupts a predicted stem-loop structure. We also report an abnormal preponderance of soluble tau protein isoforms with four microtubule-binding repeats over isoforms with three repeats in familial MSTD. This most likely accounts for our previous finding that sarkosyl-insoluble tau protein extracted from the filamentous deposits in familial MSTD consists only of tau isoforms with four repeats. These findings reveal that a departure from the normal ratio of four-repeat to three-repeat tau isoforms leads to the formation of abnormal tau filaments. The results show that dysregulation of tau protein production can cause neurodegeneration and imply that the FTDP-17 gene is the tau gene. This work has major implications for Alzheimer’s disease and other tauopathies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muscle contraction is the result of myosin cross-bridges (XBs) cyclically interacting with the actin-containing thin filament. This interaction is modulated by the thin filament regulatory proteins, troponin and tropomyosin (Tm). With the use of an in vitro motility assay, the role of Tm in myosin’s ability to generate force and motion was assessed. At saturating myosin surface densities, Tm had no effect on thin filament velocity. However, below 50% myosin saturation, a significant reduction in actin–Tm filament velocity was observed, with complete inhibition of movement occurring at 12.5% of saturating surface densities. Under similar conditions, actin filaments alone demonstrated no reduction in velocity. The effect of Tm on force generation was assessed at the level of a single thin filament. In the absence of Tm, isometric force was a linear function of the density of myosin on the motility surface. At 50% myosin surface saturation, the presence of Tm resulted in a 2-fold enhancement of force relative to actin alone. However, no further potentiation of force was observed with Tm at saturating myosin surface densities. These results indicate that, in the presence of Tm, the strong binding of myosin cooperatively activates the thin filament. The inhibition of velocity at low myosin densities and the potentiation of force at higher myosin densities suggest that Tm can directly modulate the kinetics of a single myosin XB and the recruitment of a population of XBs, respectively. At saturating myosin conditions, Tm does not appear to affect the recruitment or the kinetics of myosin XBs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surmises of how myosin subfragment 1 (S1) interacts with actin filaments in muscle contraction rest upon knowing the relative arrangement of the two proteins. Although there exist crystallographic structures for both S1 and actin, as well as electron microscopy data for the acto–S1 complex (AS1), modeling of this arrangement has so far only been done “by eye.” Here we report fitted AS1 structures obtained using a quantitative method that is both more objective and makes more complete use of the data. Using undistorted crystallographic results, the best-fit AS1 structure shows significant differences from that obtained by visual fitting. The best fit is produced using the F-actin model of Holmes et al. [Holmes, K. C., Popp, D., Gebhard, W. & Kabsch, W. (1990) Nature (London) 347, 44–49]. S1 residues at the AS1 interface are now found at a higher radius as well as being translated axially and rotated azimuthally. Fits using S1 plus loops missing from the crystal structure were achieved using a homology search method to predict loop structures. These improved fits favor an arrangement in which the loop at the 50- to 20-kDa domain junction of S1 is located near the N terminus of actin. Rigid-body movements of the lower 50-kDa domain, which further improve the fit, produce closure of the large 50-kDa domain cleft and bring conserved residues in the lower 50-kDa domain into an apparently appropriate orientation for close interaction with actin. This finding supports the idea that binding of ATP to AS1 at the end of the ATPase cycle disrupts the actin binding site by changing the conformation of the 50-kDa cleft of S1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Normal human luminal and myoepithelial breast cells separately purified from a set of 10 reduction mammoplasties by using a double antibody magnetic affinity cell sorting and Dynabead immunomagnetic technique were used in two-dimensional gel proteome studies. A total of 43,302 proteins were detected across the 20 samples, and a master image for each cell type comprising a total of 1,738 unique proteins was derived. Differential analysis identified 170 proteins that were elevated 2-fold or more between the two breast cell types, and 51 of these were annotated by tandem mass spectrometry. Muscle-specific enzyme isoforms and contractile intermediate filaments including tropomyosin and smooth muscle (SM22) alpha protein were detected in the myoepithelial cells, and a large number of cytokeratin subclasses and isoforms characteristic of luminal cells were detected in this cell type. A further 134 nondifferentially regulated proteins were also annotated from the two breast cell types, making this the most extensive study to date of the protein expression map of the normal human breast and the basis for future studies of purified breast cancer cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent determination of the myosin head atomic structure has led to a new model of muscle contraction, according to which mechanical torque is generated in the catalytic domain and amplified by the lever arm made of the regulatory domain [Fisher, A. J., Smith, C. A., Thoden, J., Smith, R., Sutoh, K., Holden, H. M. & Rayment, I. (1995) Biochemistry 34, 8960–8972]. A crucial aspect of this model is the ability of the regulatory domain to move independently of the catalytic domain. Saturation transfer–EPR measurements of mobility of these two domains in myosin filaments give strong support for this notion. The catalytic domain of the myosin head was labeled at Cys-707 with indane dione spin label; the regulatory domain was labeled at the single cysteine residue of the essential light chain and exchanged into myosin. The mobility of the regulatory domain in myosin filaments was characterized by an effective rotational correlation time (τR) between 24 and 48 μs. In contrast, the mobility of the catalytic domain was found to be τR = 5–9 μs. This difference in mobility between the two domains existed only in the filament form of myosin. In the monomeric form, or when bound to actin, the mobility of the two domains in myosin was indistinguishable, with τR = 1–4 μs and >1,000 μs, respectively. Therefore, the observed difference in filaments cannot be ascribed to differences in local conformations of the spin-labeled sites. The most straightforward interpretation suggests a flexible hinge between the two domains, which would have to stiffen before force could be generated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with a luminous electric discharge that forms in the mesospheric region between thundercloud tops and the ionosphere at 90-km altitude. These cloud–ionosphere discharges (CIs), following visual reports dating back to the 19th century, were finally imaged by a low-light TV camera as part of the “SKYFLASH” program at the University of Minnesota in 1989. Many observations were made by various groups in the period 1993–1996. The characteristics of CIs are that they have a wide range of sizes from a few kilometers up to 50 km horizontally; they extend from 40 km to nearly 90 km vertically, with an intense region near 60–70 km and streamers extending down toward cloud tops; the CIs are partly or entirely composed of vertical luminous filaments of kilometer size. The predominate color is red. The TV images show that the CIs usually have a duration less than one TV field (16.7 ms), but higher-speed photometric measurements show that they last about 3 ms, and are delayed 3 ms after an initiating cloud–ground lightning stroke; 95% of these initiating strokes are found to be “positive”—i.e., carry positive charges from clouds to ground. The preference for positive initiating strokes is not understood. Theories of the formation of CIs are briefly reviewed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Divalent cations are thought essential for motile function of leukocytes in general, and for the function of critical adhesion molecules in particular. In the current study, under direct microscopic observation with concomitant time-lapse video recording, we examined the effects of 10 mM EDTA on locomotion of human blood polymorphonuclear leukocytes (PMN). In very thin slide preparations, EDTA did not impair either random locomotion or chemotaxis; motile behavior appeared to benefit from the close approximation of slide and coverslip (“chimneying”). In preparations twice as thick, PMN in EDTA first exhibited active deformability with little or no displacement, then rounded up and became motionless. However, on creation of a chemotactic gradient, the same cells were able to orient and make their way to the target, often, however, losing momentarily their purchase on the substrate. In either of these preparations without EDTA, specific antibodies to β2 integrins did not prevent random locomotion or chemotaxis, even when we added antibodies to β1 and αvβ3 integrins and to integrin-associated protein, and none of these antibodies added anything to the effects of EDTA. In the more turbulent environment of even more media, effects of anti-β2 integrins became evident: PMN still could locomote but adhered to substrate largely by their uropods and by uropod-associated filaments. We relate these findings to the reported independence from integrins of PMN in certain experimental and disease states. Moreover, we suggest that PMN locomotion in close quarters is not only integrin-independent, but independent of external divalent cations as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pallido-ponto-nigral degeneration (PPND) is one of the most well characterized familial neurodegenerative disorders linked to chromosome 17q21–22. These hereditary disorders are known collectively as frontotemporal dementia (FTD) and parkinsonism linked to chromosome 17 (FTDP-17). Although the clinical features and associated regional variations in the neuronal loss observed in different FTDP-17 kindreds are diverse, the diagnostic lesions of FTDP-17 brains are tau-rich filaments in the cytoplasm of specific subpopulations of neurons and glial cells. The microtubule associated protein (tau) gene is located on chromosome 17q21–22. For these reasons, we investigated the possibility that PPND and other FTDP-17 syndromes might be caused by mutations in the tau gene. Two missense mutations in exon 10 of the tau gene that segregate with disease, Asn279Lys in the PPND kindred and Pro301Leu in four other FTDP-17 kindreds, were found. A third mutation was found in the intron adjacent to the 3′ splice site of exon 10 in patients from another FTDP-17 family. Transcripts that contain exon 10 encode tau isoforms with four microtubule (MT)-binding repeats (4Rtau) as opposed to tau isoforms with three MT-binding repeats (3Rtau). The insoluble tau aggregates isolated from brains of patients with each mutation were analyzed by immunoblotting using tau-specific antibodies. For each of three mutations, abnormal tau with an apparent Mr of 64 and 69 was observed. The dephosphorylated material comigrated with tau isoforms containing exon 10 having four MT-binding repeats but not with 3Rtau. Thus, the brains of patients with both the missense mutations and the splice junction mutation contain aggregates of insoluble 4Rtau in filamentous inclusions, which may lead to neurodegeneration.