26 resultados para Inherited Renal Disease


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the origin of the Pto disease resistance (R) gene that was previously identified in the wild tomato species Lycopersicon pimpinellifolium and isolated by map-based cloning. Pto encodes a serine-threonine protein kinase that specifically recognizes strains of Pseudomonas syringae pv. tomato (Pst) that express the avirulence gene avrPto. We examined an accession of the distantly related wild species Lycopersicon hirsutum var. glabratum that exhibits avrPto-specific resistance to Pst. The Pst resistance of L. hirsutum was introgressed into a susceptible Lycopersicon esculentum background to create the near-isogenic line 96T133-3. Resistance to Pst(avrPto) in 96T133-3 was inherited as a single dominant locus and cosegregated with a restriction fragment length polymorphism detected by the Pto gene. This observation suggested that a member of the Pto gene family confers Pst(avrPto) resistance in this L. hirsutum line. Here we report the cloning and characterization of four members of the Pto family from 96T133-3. One gene (LhirPto) is 97% identical to Pto and encodes a catalytically active protein kinase that elicits a hypersensitive response when coexpressed with avrPto in leaves of Nicotiana benthamiana. In common with the Pto kinase, the LhirPto protein physically interacts with AvrPto and downstream members of the Pto signaling pathway. Our studies indicate that R genes of the protein kinase class may not evolve rapidly in response to pathogen pressure and rather that their ability to recognize specific Avr proteins can be highly conserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antipyretic analgesics, taken in large doses over a prolonged period, cause a specific form of kidney disease, characterized by papillary necrosis and interstitial scarring. Epidemiological evidence incriminated mixtures of drugs including aspirin (ASA), phenacetin, and caffeine. The mechanism of toxicity is unclear. We tested the effects of ASA, acetaminophen (APAF, the active metabolite of phenacetin), caffeine, and other related drugs individually and in combination on mouse inner medullary collecting duct cells (mIMCD3). The number of rapidly proliferating cells was reduced by ≈50% by 0.5 mM ASA, salicylic acid, or APAF. The drugs had less effect on confluent cells, which proliferate slowly. Thus, the slow in vivo turnover of IMCD cells could explain why clinical toxicity requires very high doses of these drugs over a very long period. Caffeine greatly potentiated the effect of acetaminophen, pointing to a potential danger of the mixture. Cyclooxygenase (COX) inhibitors, indomethacin and NS-398, did not reduce cell number except at concentrations greatly in excess of those that inhibit COX. Therefore, COX inhibition alone is not toxic. APAF arrests most cells in late G1 and S and produces a mixed form of cell death with both oncosis (swollen cells and nuclei) and apoptosis. APAF is known to inhibit the synthesis of DNA and cause chromosomal aberrations due to inhibition of ribonucleotide reductase. Such effects of APAF might account for renal medullary cell death in vivo and development of uroepithelial tumors from surviving cells that have chromosomal aberrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fabry disease is an X-linked metabolic disorder due to a deficiency of alpha-galactosidase A (alpha-gal A; EC 3.2.1.22). Patients accumulate glycosphingolipids with terminal alpha-galactosyl residues that come from intracellular synthesis, circulating metabolites, or from the biodegradation Of senescent cells. Patients eventually succumb to renal, cardio-, or cerebrovascular disease. No specific therapy exists. One possible approach to ameliorating this disorder is to target corrective gene transfer therapy to circulating hematopoietic cells. Toward this end, an amphotropic virus-producer cell line has been developed that produces a high titer (>10(6) i.p. per ml) recombinant retrovirus constructed to transduce and correct target cells. Virus-producer cells also demonstrate expression of large amounts of both intracellular and secreted alpha-gal A. To examine the utility of this therapeutic vector, skin fibroblasts from Fabry patients were corrected for the metabolic defect by infection with this recombinant virus and secreted enzyme was observed. Furthermore, the secreted enzyme was found to be taken up by uncorrected cells in a mannose-6-phosphate receptor-dependent manner. In related experiments, immortalized B cell lines from Fabry patients, created as a hematologic delivery test system, were transduced. As with the fibroblasts, transduced patient B cell lines demonstrated both endogenous enzyme correction and a small amount of secretion together with uptake by uncorrected cells. These studies demonstrate that endogenous metabolic correction in transduced cells, combined with secretion, may provide a continuous source of corrective material in trans to unmodified patient bystander cells (metabolic cooperativity).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Huntington disease is a dominantly inherited, untreatable neurological disorder featuring a progressive loss of striatal output neurons that results in dyskinesia, cognitive decline, and, ultimately, death. Neurotrophic factors have recently been shown to be protective in several animal models of neurodegenerative disease, raising the possibility that such substances might also sustain the survival of compromised striatal output neurons. We determined whether intracerebral administration of brain-derived neurotrophic factor, nerve growth factor, neurotrophin-3, or ciliary neurotrophic factor could protect striatal output neurons in a rodent model of Huntington disease. Whereas treatment with brain-derived neurotrophic factor, nerve growth factor, or neurotrophin-3 provided no protection of striatal output neurons from death induced by intrastriatal injection of quinolinic acid, an N-methyl-D-aspartate glutamate receptor agonist, treatment with ciliary neurotrophic factor afforded marked protection against this neurodegenerative insult.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Na+-phosphate (Pi) cotransport across the renal brush border membrane is the rate limiting step in the overall reabsorption of filtered Pi. Murine and human renal-specific cDNAs (NaPi-7 and NaPi-3, respectively) related to this cotransporter activity (type II Na+-Pi cotransporter) have been cloned. We now report the cloning and characterization of the corresponding mouse (Npt2) and human (NPT2) genes. The genes were cloned by screening mouse genomic and human chromosome 5-specific libraries, respectively. Both genes are approximately 16 kb and are comprised of 13 exons and 12 introns, the junctions of which conform to donor and acceptor site consensus sequences. Putative CAAT and TATA boxes are located, respectively, at positions -147 and -40 of the Npt2 gene and -143 and -51 of the NPT2 gene, relative to nucleotide 1 of the corresponding cDNAs. The translation initiation site is within exon 2 of both genes. The first 220 bp of the mouse and human promoter regions exhibit 72% identity. Two transcription start sites (at positions -9 and - 10 with respect to nucleotide 1 of NaPi-7 cDNA) and two polyadenylylation signals were identified in the Npt2 gene by primer extension, 5' and 3' rapid amplification of cDNA ends (RACE). A 484-bp 5' flanking region of the Npt2 gene, comprising the CAAT box, TATA box, and exon 1, was cloned upstream of a luciferase reporter gene; this construct significantly stimulated luciferase gene expression, relative to controls, when transiently transfected into OK cells, a renal cell line expressing type II Na+ -Pi cotransporter activity. The present data provide a basis for detailed analysis of cis and trans elements involved in the regulation of Npt2/NPT2 gene transcription and facilitate screening for mutations in the NPT2 gene in patients with autosomally inherited disorders of renal Pi reabsorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of inflammatory T cells in Crohn's disease suggests that inherited variations in major histocompatibility complex (MHC) class II genes may be of pathogenetic importance in inflammatory bowel disease. The absence of consistent and strong associations with MHC class II genes in Caucasian patients with inflammatory bowel disease probably reflects the use of less precise typing approaches and the failure to type certain loci by any means. A PCR-sequence-specific oligonucleotide-based approach was used to type individual alleles of the HLA class II DRB1, DRB3, DRB4, and DRB5 loci in 40 patients with ulcerative colitis, 42 Crohn's disease patients, and 93 ethnically matched healthy controls. Detailed molecular typing of the above alleles has previously not been reported in patients with inflammatory bowel disease. A highly significant positive association with the HLA-DRB3*0301 allele was observed in patients with Crohn's disease (P = 0.0004) but not in patients with ulcerative colitis. The relative risk for this association was 7.04. Other less significant HLA class II associations were also noted in patients with Crohn's disease. One of these associations involved the HLA-DRB1*1302 allele, which is known to be in linkage disequilibrium with HLA-DRB3*0301. These data suggest that a single allele of an infrequently typed HLA class II locus is strongly associated with Crohn's disease and that MHC class II molecules may be important in its pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genomic mapping has been used to identify a region of the host genome that determines resistance to fusiform rust disease in loblolly pine where no discrete, simply inherited resistance factors had been previously found by conventional genetic analysis over four decades. A resistance locus, behaving as a single dominant gene, was mapped by association with genetic markers, even though the disease phenotype deviated from the expected Mendelian ratio. The complexity of forest pathosystems and the limitations of genetic analysis, based solely on phenotype, had led to an assumption that effective long-term disease resistance in trees should be polygenic. However, our data show that effective long-term resistance can be obtained from a single qualitative resistance gene, despite the presence of virulence in the pathogen population. Therefore, disease resistance in this endemic coevolved forest pathosystem is not exclusively polygenic. Genomic mapping now provides a powerful tool for characterizing the genetic basis of host pathogen interactions in forest trees and other undomesticated, organisms, where conventional genetic analysis often is limited or not feasible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human aging is impacted severely by cardiovascular disease and significantly but less overtly by renal dysfunction. Advanced glycation endproducts (AGEs) have been linked to tissue damage in diabetes and aging, and the AGE inhibitor aminoguanidine (AG) has been shown to inhibit renal and vascular pathology in diabetic animals. In the present study, the effects of AG on aging-related renal and vascular changes and AGE accumulation were studied in nondiabetic female Sprague-Dawley (S-D) and Fischer 344 (F344) rats treated with AG (0.1% in drinking water) for 18 mo. Significant increases in the AGE content in aged cardiac (P < 0.05), aortic (P < 0.005), and renal (P < 0.05) tissues were prevented by AG treatment (P < 0.05 for each tissue). A marked age-linked vasodilatory impairment in response to acetylcholine and nitroglycerine was prevented by AG treatment (P < 0.005), as was an age-related cardiac hypertrophy evident in both strains (P < 0.05). While creatinine clearance was unaffected by aging in these studies, the AGE/ creatinine clearance ratio declined 3-fold in old rats vs. young rats (S-D, P < 0.05; F344, P < 0.01), while it declined significantly less in AG-treated old rats (P < 0.05). In S-D but not in F344 rats, a significant (P < 0.05) age-linked 24% nephron loss was completely prevented by AG treatment, and glomerular sclerosis was markedly suppressed (P < 0.01). Age-related albuminuria and proteinuria were markedly inhibited by AG in both strains (S-D, P < 0.01; F344, P < 0.01). These data suggest that early interference with AGE accumulation by AG treatment may impart significant protection against the progressive cardiovascular and renal decline afflicting the last decades of life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycystic kidney disease 1 (PKD1) is the major locus of the common genetic disorder autosomal dominant polycystic kidney disease. We have studied PKD1 mRNA, with an RNase protection assay, and found widespread expression in adult tissue, with high levels in brain and moderate signal in kidney. Expression of the PKD1 protein, polycystin, was assessed in kidney using monoclonal antibodies to a recombinant protein containing the C terminus of the molecule. In fetal and adult kidney, staining is restricted to epithelial cells. Expression in the developing nephron is most prominent in mature tubules, with lesser staining in Bowman's capsule and the proximal ureteric bud. In the nephrogenic zone, detectable signal was observed in comma- and S-shaped bodies as well as the distal branches of the ureteric bud. By contrast, uninduced mesenchyme and glomerular tufts showed no staining. In later fetal (>20 weeks) and adult kidney, strong staining persists in cortical tubules with moderate staining detected in the loops of Henle and collecting ducts. These results suggest that polycystin's major role is in the maintenance of renal epithelial differentiation and organization from early fetal life. Interestingly, polycystin expression, monitored at the mRNA level and by immunohistochemistry, appears higher in cystic epithelia, indicating that the disease does not result from complete loss of the protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The survival of cultured mouse hippocampal neurons was found to be greatly enhanced by micromolar concentrations of the excitatory neurotransmitter glutamate. Blockade of kainate/AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) glutamate receptors increased the rate of neuron death, suggesting that endogenous glutamate in the cultures promotes survival. Addition of glutamate (0.5-1 microM) further increased neuron survival, whereas glutamate in excess of 20 microM resulted in increased death. Thus, the survival vs. glutamate dose-response relation is bell-shaped with an optimal glutamate concentration near 1 microM. We found that hippocampal neurons from mice with the genetic defect trisomy 16 (Ts16) died 2-3 times faster than normal (euploid) neurons. Moreover, glutamate, at all concentrations tested, failed to increase survival of Ts16 neurons. In contrast, the neurotrophic polypeptide basic fibroblast growth factor did increase the survival of Ts16 and euploid neurons. Ts16 is a naturally occurring mouse genetic abnormality, the human analog of which (Down syndrome) leads to altered brain development and Alzheimer disease. These results demonstrate that the Ts16 genotype confers a defect in the glutamate-mediated survival response of hippocampal neurons and that this defect can contribute to their accelerated death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human VHL tumor suppressor gene has been implicated in the inherited disorder von Hippel-Lindau disease and in sporadic renal carcinoma. The homologous rat gene encodes a 185-amino acid protein that is 88% sequence identical to the aligned 213-amino acid human VHL gene product. When expressed in COS-7 cells, both the human and the rat VHL proteins showed predominant nuclear, nuclear and cytosolic, or predominant cytosolic VHL staining by immunofluorescence. A complicated pattern of cellular proteins was seen that could be specifically coimmunoprecipitated with the introduced VHL protein. A complex containing VHL and proteins of apparent molecular masses 16 and 9 kDa was the most consistently observed. Certain naturally occurring VHL missense mutations demonstrated either complete or partial loss of the p16-p9 complex. Thus, the VHL tumor suppressor gene product is a nuclear protein, perhaps capable of specifically translocating between the nucleus and the cytosol. It is likely that VHL executes its functions via formation of specific multiprotein complexes. Identification of these VHL-associated proteins will likely clarify the physiology of this tumor suppressor gene.