31 resultados para Identification with supervisor
Resumo:
Protein–protein interaction plays a major role in all biological processes. The currently available genetic methods such as the two-hybrid system and the protein recruitment system are relatively limited in their ability to identify interactions with integral membrane proteins. Here we describe the development of a reverse Ras recruitment system (reverse RRS), in which the bait used encodes a membrane protein. The bait is expressed in its natural environment, the membrane, whereas the protein partner (the prey) is fused to a cytoplasmic Ras mutant. Protein–protein interaction between the proteins encoded by the prey and the bait results in Ras membrane translocation and activation of a viability pathway in yeast. We devised the expression of the bait and prey proteins under the control of dual distinct inducible promoters, thus enabling a rapid selection of transformants in which growth is attributed solely to specific protein–protein interaction. The reverse RRS approach greatly extends the usefulness of the protein recruitment systems and the use of integral membrane proteins as baits. The system serves as an attractive approach to explore novel protein–protein interactions with high specificity and selectivity, where other methods fail.
Resumo:
A novel multiple affinity purification (MAFT) or tandem affinity purification (TAP) tag has been constructed. It consists of the calmodulin binding peptide, six histidine residues, and three copies of the hemagglutinin epitope. This ‘CHH’ MAFT tag allows two or three consecutive purification steps, giving high purity. Active Clb2–Cdc28 kinase complex was purified from yeast cells after inserting the CHH tag into Clb2. Associated proteins were identified using mass spectrometry. These included the known associated proteins Cdc28, Sic1 and Cks1. Several other proteins were found including the 70 kDa chaperone, Ssa1.
Resumo:
The properties of human DNA helicase V (HDH V) were studied in greater detail following an improved purification procedure. From 450 g of cultured cells, <0.1 mg of pure protein was isolated. HDH V unwinds DNA unidirectionally by moving in the 3′ to 5′ direction along the bound strand in an ATP- and Mg2+-dependent fashion. The enzyme is not processive and can also unwind partial RNA–RNA duplexes such as HDH IV and HDH VIII. The Mr determined by SDS–PAGE (66 kDa) corresponds to that measured under native conditions, suggesting that HDH V exists as a monomer in the nucleus. Microsequencing of the purified HDH V shows that this enzyme is identical to the far upstream element-binding protein (FBP), a protein that stimulates the activity of the c-myc gene by binding specifically to the ‘FUSE’ DNA region localized upstream of its promoter. The sequence of HDH V/FBP contains RGG motifs like HDH IV/nucleolin, HDH VIII/G3BP as well as other human RNA and DNA helicases identified by other laboratories.
Resumo:
The corticotropin-releasing factor (CRF) family of neuropeptides includes the mammalian peptides CRF, urocortin, and urocortin II, as well as piscine urotensin I and frog sauvagine. The mammalian peptides signal through two G protein-coupled receptor types to modulate endocrine, autonomic, and behavioral responses to stress, as well as a range of peripheral (cardiovascular, gastrointestinal, and immune) activities. The three previously known ligands are differentially distributed anatomically and have distinct specificities for the two major receptor types. Here we describe the characterization of an additional CRF-related peptide, urocortin III, in the human and mouse. In searching the public human genome databases we found a partial expressed sequence tagged (EST) clone with significant sequence identity to mammalian and fish urocortin-related peptides. By using primers based on the human EST sequence, a full-length human clone was isolated from genomic DNA that encodes a protein that includes a predicted putative 38-aa peptide structurally related to other known family members. With a human probe, we then cloned the mouse ortholog from a genomic library. Human and mouse urocortin III share 90% identity in the 38-aa putative mature peptide. In the peptide coding region, both human and mouse urocortin III are 76% identical to pufferfish urocortin-related peptide and more distantly related to urocortin II, CRF, and urocortin from other mammalian species. Mouse urocortin III mRNA expression is found in areas of the brain including the hypothalamus, amygdala, and brainstem, but is not evident in the cerebellum, pituitary, or cerebral cortex; it is also expressed peripherally in small intestine and skin. Urocortin III is selective for type 2 CRF receptors and thus represents another potential endogenous ligand for these receptors.
Resumo:
Because centrosomes were enriched in the bile canaliculi fraction from the chicken liver through their association with apical membranes, we developed a procedure for isolation of centrosomes from this fraction. With the use of the centrosomes, we generated centrosome-specific monoclonal antibodies. Three of the monoclonal antibodies recognized an antigen of ∼90 kDa. Cloning of its cDNA identified this antigen as a chicken homologue of outer dense fiber 2 protein (Odf2), which was initially identified as a sperm outer dense fiber-specific component. Exogenously expressed and endogenous Odf2 were shown to be concentrated at the centrosomes in a microtubule-independent manner in various types of cells at both light and electron microscopic levels. Odf2 exhibited a cell cycle-dependent pattern of localization and was preferentially associated with the mother centrioles in G0/G1-phase. Toward G1/S-phase before centrosome duplication, it became detectable in both mother and daughter centrioles. In the isolated bile canaliculi and centrosomes, Odf2, in contrast to other centrosomal components, was highly resistant to KI extraction. These findings indicate that Odf2 is a widespread KI-insoluble scaffold component of the centrosome matrix, which may be involved in the maturation event of daughter centrioles.
Resumo:
High molecular weight kininogen (HK) and factor XII are known to bind to human umbilical vein endothelial cells (HUVEC) in a zinc-dependent and saturable manner indicating that HUVEC express specific binding site(s) for those proteins. However, identification and immunochemical characterization of the putative receptor site(s) has not been previously accomplished. In this report, we have identified a cell surface glycoprotein that is a likely candidate for the HK binding site on HUVECs. When solubilized HUVEC membranes were subjected to an HK-affinity column in the presence or absence of 50 microM ZnCl2 and the bound membrane proteins eluted, a single major protein peak was obtained only in the presence of zinc. SDS/PAGE analysis and silver staining of the protein peak revealed this protein to be 33 kDa and partial sequence analysis matched the NH2 terminus of gC1q-R, a membrane glycoprotein that binds to the globular "heads" of C1q. Two other minor proteins of approximately 70 kDa and 45 kDa were also obtained. Upon analysis by Western blotting, the 33-kDa band was found to react with several monoclonal antibodies (mAbs) recognizing different epitopes on gC1q-R. Ligand and dot blot analyses revealed zinc-dependent binding of biotinylated HK as well as biotinylated factor XII to the isolated 33-kDa HUVEC molecule as well as recombinant gC1q-R. In addition, binding of 125I-HK to HUVEC cells was inhibited by selected monoclonal anti-gC1q-R antibodies. C1q, however, did not inhibit 125I-HK binding to HUVEC nor did those monoclonals known to inhibit C1q binding to gC1q-R. Taken together, the data suggest that HK (and factor XII) bind to HUVECs via a 33-kDa cell surface glycoprotein that appears to be identical to gC1q-R but interact with a site on gC1q-R distinct from that which binds C1q.
Resumo:
To delineate the phospholipase C (PLC; EC 3.1.4.3) beta2 sequences involved in interactions with the beta-gamma subunits of G proteins, we prepared a number of mammalian expression plasmids encoding a series of PLC beta2 segments that span the region from the beginning of the X box to the end of the Y box. We found the sequence extending from residue Glu-435 to residue Val-641 inhibited Gbeta-gamma-mediated activation of PLC beta2 in transfected COS-7 cells. This PLC beta2 sequence also inhibited ligand-induced activation of PLC in COS-7 cells cotransfected with cDNAs encoding the complement component C5a receptor and PLC beta2 but not in cells transfected with the alpha1B-adrenergic receptor, suggesting that the PLC beta2 residues (Glu-435 to Val-641) inhibit the Gbeta-gamma-mediated but not the Galpha-mediated effect. The inhibitory effect on Gbeta-gamma-mediated activation of PLC beta2 may be the result of the interaction between Gbeta-gamma and the PLC beta2 fragment. This idea was confirmed by the observation that a fusion protein comprising these residues (Glu-435 to Val-641) of PLC beta2 and glutathione S-transferase (GST) bound to Gbeta-gamma in an in vitro binding assay. The Gbeta-gamma-binding region was further narrowed down to 62 amino acids (residues Leu-580 to Val-641) by testing fusion proteins comprising various PLC beta2 sequences and GST in the in vitro binding assay.
Resumo:
beta-2-Microglobulin (beta-2m) is a major constituent of amyloid fibrils in patients with dialysis-related amyloidosis (DRA). Recently, we found that the pigmented and fluorescent adducts formed nonenzymatically between sugar and protein, known as advanced glycation end products (AGEs), were present in beta-2m-containing amyloid fibrils, suggesting the possible involvement of AGE-modified beta-2m in bone and joint destruction in DRA. As an extension of our search for the native structure of AGEs in beta-2m of patients with DRA, the present study focused on pentosidine, a fluorescent cross-linked glycoxidation product. Determination by both HPLC assay and competitive ELISA demonstrated a significant amount of pentosidine in amyloid-fibril beta-2m from long-term hemodialysis patients with DRA, and the acidic isoform of beta-2m in the serum and urine of hemodialysis patients. A further immunohistochemical study revealed the positive immunostaining for pentosidine and immunoreactive AGEs and beta-2m in macrophage-infiltrated amyloid deposits of long-term hemodialysis patients with DRA. These findings implicate a potential link of glycoxidation products in long-lived beta-2m-containing amyloid fibrils to the pathogenesis of DRA.
Resumo:
In search of proteins which interact with activated steroid hormone receptors, we screened a human liver lambda gt11 expression library with the glucocorticoid receptor. We identified and cloned a cDNA sequence of 1322 bp that encodes a protein of 274 aa. This protein consists predominantly of hydrophilic amino acids and contains a putative bipartite nuclear localization signal. The in vitro translated receptor-associating protein runs in SDS/polyacrylamide gels with an apparent molecular mass of 46 kDa. By use of the bacterially expressed fusion protein with glutathione S-transferase we have found that interaction is not limited to the glucocorticoid receptor but included other nuclear receptors--most notably, the estrogen and thyroid receptors. Binding also occurs with the glucocorticoid receptor complexed with the antiglucocorticoid RU 38486, with the estrogen receptor complexed with the antiestrogen 4-hydroxytamoxifen or ICI 164,384, and even with receptors not complexed with ligand. Association with steroid hormone receptors depends on prior receptor activation--i.e., release from heat shock proteins. The sequence identified here appears to be a general partner protein for nuclear hormone receptors, with the gene being expressed in a variety of mammalian tissues.
Resumo:
In a search for retinoid X receptor-like molecules in Drosophila, we have identified an additional member of the nuclear receptor superfamily, XR78E/F. In the DNA-binding domain, XR78E/F is closely related to the mammalian receptor TR2, as well as to the nuclear receptors Coup-TF and Seven-up. We demonstrate that XR78E/F binds as a homodimer to direct repeats of the sequence AGGTCA. In transient transfection assays, XR78E/F represses ecdysone signaling in a DNA-binding-dependent fashion. XR78E/F has its highest expression in third-instar larvae and prepupae. These experiments suggest that XR78E/F may play a regulatory role in the transcriptional cascade triggered by the hormone ecdysone in Drosophila.
Resumo:
Both stem cells and mast cells express c-kit and proliferate after exposure to c-kit ligand. Mutations in c-kit may enhance or interfere with the ability of c-kit receptor to initiate the intracellular pathways resulting in cell proliferation. These observations suggested to us that mastocytosis might in some patients result from mutations in c-kit. cDNA synthesized from peripheral blood mononuclear cells of patients with indolent mastocytosis, mastocytosis with an associated hematologic disorder, aggressive mastocytosis, solitary mastocytoma, and chronic myelomonocytic leukemia unassociated with mastocytosis was thus screened for a mutation of c-kit. This analysis revealed that four of four mastocytosis patients with an associated hematologic disorder with predominantly myelodysplastic features had an A-->T substitution at nt 2468 of c-kit mRNA that causes an Asp-816-->Val substitution. One of one patient examined who had mastocytosis with an associated hematologic disorder had the corresponding mutation in genomic DNA. Identical or similar amino acid substitutions in mast cell lines result in ligand-independent autophosphorylation of the c-kit receptor. This mutation was not identified in the patients within the other disease categories or in 67 of 67 controls. The identification of the point mutation Asp816Val in c-kit in patients with mastocytosis with an associated hematologic disorder provides insight not only into the pathogenesis of this form of mastocytosis but also into how hematopoiesis may become dysregulated and may serve to provide a means of confirming the diagnosis, assessing prognosis, and developing intervention strategies.
Resumo:
In Drosophila, stripe (sr) gene function is required for normal muscle development. Some mutations disrupt embryonic muscle development and are lethal. Other mutations cause total loss of only a single muscle in the adult. Molecular analysis shows that sr encodes a predicted protein containing a zinc finger motif. This motif is homologous to the DNA binding domains encoded by members of the early growth response (egr) gene family. In mammals, expression of egr genes is induced by intercellular signals, and there is evidence for their role in many developmental events. The identification of sr as an egr gene and its pattern of expression suggest that it functions in muscle development via intercellular communication.
Resumo:
The Huntington disease (HD) phenotype is associated with expansion of a trinucleotide repeat in the IT15 gene, which is predicted to encode a 348-kDa protein named huntington. We used polyclonal and monoclonal anti-fusion protein antibodies to identify native huntingtin in rat, monkey, and human. Western blots revealed a protein with the expected molecular weight which is present in the soluble fraction of rat and monkey brain tissues and lymphoblastoid cells from control cases. In lymphoblastoid cell lines from juvenile-onset heterozygote HD cases, both normal and mutant huntingtin are expressed, and increasing repeat expansion leads to lower levels of the mutant protein. Immunocytochemistry indicates that huntingtin is located in neurons throughout the brain, with the highest levels evident in larger neurons. In the human striatum, huntingtin is enriched in a patch-like distribution, potentially corresponding to the first areas affected in HD. Subcellular localization of huntingtin is consistent with a cytosolic protein primarily found in somatodendritic regions. Huntingtin appears to particularly associate with microtubules, although some is also associated with synaptic vesicles. On the basis of the localization of huntingtin in association with microtubules, we speculate that the mutation impairs the cytoskeletal anchoring or transport of mitochondria, vesicles, or other organelles or molecules.
Resumo:
We have developed a modified rhodamine (Rho) staining procedure to study uptake and efflux in murine hematopoietic stem cells. Distinct populations of Rho++ (bright), Rho+ (dull), and Rho- (negative) cells could be discriminated. Sorted Rho- cells were subjected to a second Rho staining procedure with the P-glycoprotein blocking agent verapamil (VP). Most cells became Rho positive [Rho-/Rho(VP)+ cells] and some remained Rho negative [Rho-/Rho(VP)- cells]. These cell fractions were characterized by their marrow-repopulating ability in a syngeneic, sex-mismatch transplantation model. Short-term repopulating ability was determined by recipient survival for at least 6 weeks after lethal irradiation and transplantation--i.e., radioprotection. Long-term repopulating ability at 6 months after transplantation was measured by fluorescence in situ hybridization with a Y-chromosome-specific probe, by graft function and recipient survival. Marrow-repopulating cells were mainly present in the small Rho- cell fraction. Transplantation of 30 Rho- cells resulted in 50% radioprotection and > 80% donor repopulation in marrow, spleen, and thymus 6 months after transplantation. Cotransplantation of cells from both fractions in individual mice directly showed that within this Rho- cell fraction, the Rho-/Rho(VP)+ cells exhibited mainly short-term and the Rho-/Rho(VP)- cells exhibited mainly long-term repopulating ability. Our results indicate that hematopoietic stem cells have relatively high P-glycoprotein expression and that the cells responsible for long-term repopulating ability can be separated from cells exhibiting short-term repopulating ability, probably by a reduced mitochondrial Rho-binding capacity.
Resumo:
Granzyme B serine protease is found in the granules of activated cytotoxic T cells and in natural and lymphokine-activated killer cells. This protease plays a critical role in the rapid induction of target cell DNA fragmentation. The DNA regulatory elements that are responsible for the specificity of granzyme B gene transcription in activated T-cells reside between nt -148 and +60 (relative to the transcription start point at +1) of the human granzyme B gene promoter. This region contains binding sites for the transcription factors Ikaros, CBF, Ets, and AP-1. Mutational analysis of the human granzyme B promoter reveals that the Ikaros binding site (-143 to -114) and the AP-1/CBF binding site (-103 to -77) are essential for the activation of transcription in phytohemagglutinin-activated peripheral blood lymphocytes, whereas mutation of the Ets binding site does not affect promoter activity in these cells.