18 resultados para INDEX OF G-SPACES
Resumo:
Local anesthetics, commonly used for treating cardiac arrhythmias, pain, and seizures, are best known for their inhibitory effects on voltage-gated Na+ channels. Cardiovascular and central nervous system toxicity are unwanted side-effects from local anesthetics that cannot be attributed to the inhibition of only Na+ channels. Here, we report that extracellular application of the membrane-permeant local anesthetic bupivacaine selectively inhibited G protein-gated inwardly rectifying K+ channels (GIRK:Kir3) but not other families of inwardly rectifying K+ channels (ROMK:Kir1 and IRK:Kir2). Bupivacaine inhibited GIRK channels within seconds of application, regardless of whether channels were activated through the muscarinic receptor or directly via coexpressed G protein Gβγ subunits. Bupivacaine also inhibited alcohol-induced GIRK currents in the absence of functional pertussis toxin-sensitive G proteins. The mutated GIRK1 and GIRK2 (GIRK1/2) channels containing the high-affinity phosphatidylinositol 4,5-bisphosphate (PIP2) domain from IRK1, on the other hand, showed dramatically less inhibition with bupivacaine. Surprisingly, GIRK1/2 channels with high affinity for PIP2 were inhibited by ethanol, like IRK1 channels. We propose that membrane-permeant local anesthetics inhibit GIRK channels by antagonizing the interaction of PIP2 with the channel, which is essential for Gβγ and ethanol activation of GIRK channels.
Resumo:
Persistent infection of the chestnut blight fungus Cryphonectria parasitica with the prototypic hypovirus CHVI-713 results in attenuation of fungal virulence (hypo-virulence) and reduced accumulation of the GTP-binding (G) protein a subunit CPG-1. Transgenic cosuppression of CPG-1 accumulation in the absence of virus infection also confers hypovirulence. We now report the use of mRNA differential display to examine the extent to which virus infection alters fungal gene transcript accumulation and to assess the degree to which modification of CPG-1 signal transduction contributes to this alteration. More than 400 PCR products were identified that either increased (296 products) or decreased (127 products) in abundance as a result of virus infection. Significantly, 65% of these products exhibited similar changes as a result of CPG-1 cosuppression in the absence of virus infection. We also report that both virus infection and CPG-1 cosuppression elevate cAMP levels 3- to 5-fold. Additionally, it was possible to mimic the effect of virus infection and CPG-1 cosuppression on transcript accumulation for representative fungal genes by drug-induced elevation of cAMP levels. These results strengthen and extend previous indications that hypovirus infection causes a significant and persistent alteration of fungal gene expression/transcript accumulation. They further show that this alteration is primarily mediated through modification of the CPG-1 signaling pathway and suggest that, similar to mammalian Gi alpha subunits, CPG-1 functions as a negative modulator of adenylyl cyclase. Finally, these results suggest a role for G-protein-regulated cAMP accumulation in hypovirus-mediated alteration of fungal gene expression.
Resumo:
Phosducin is a cytosolic protein predominantly expressed in the retina and the pineal gland that can interact with the betagamma subunits of guanine nucleotide binding proteins (G proteins) and thereby may regulate transmembrane signaling. A cDNA encoding a phosducin-like protein (PhLP) has recently been isolated from rat brain [Miles, M. F., Barhite, S., Sganga, M. & Elliott, M. (1993) Proc. Natl. Acad. Sci. USA 90, 10831-10835. Here we report the expression of PhLP in Escherichia coli and its purification. Recombinant purified PUP inhibited multiple effects of G-protein betagamma subunits. First, it inhibited the betagamma-subunit-dependent ADP-ribosylation of purified alpha(o) by pertussis toxin. Second, it inhibited the GTPase activity of purified G(o). The IC50 value of PhLP in the latter assay was 89 nM, whereas phosducin caused half-maximal inhibition at 17 nM. And finally, PhLP antagonized the enhancement of rhodopsin phosphorylation by purified betagamma subunits. The N terminus of PhLP shows no similarity to the much longer N terminus of phosducin, the region shown to be critical for phosducin-betagamma-subunit interactions. Therefore, PhLP appears to bind to G-protein betagamma subunits by an as yet unknown mode of interaction and may represent an endogenous regulator of G-protein function.