240 resultados para Homologous recombination


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retroviruses are known to mutate at high rates. An important source of genetic variability is recombination taking place during reverse transcription of internal regions of the two genomic RNAs. We have designed an in vitro model system, involving genetic markers carried on two RNA templates, to allow a search for individual recombination events and to score their frequency of occurrence. We show that Moloney murine leukemia virus reverse transcriptase alone promotes homologous recombination efficiently. While RNA concentration has little effect on recombination frequency, there is a clear correlation between the amount of reverse transcriptase used in the assay and the extent of recombination observed. Under conditions mimicking the in vivo situation, a rate compatible with ex vivo estimates has been obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The RAD52 epistasis group genes are involved in homologous DNA recombination, and their primary structures are conserved from yeast to humans. Although biochemical studies have suggested that the fundamental mechanism of homologous DNA recombination is conserved from yeast to mammals, recent studies of vertebrate cells deficient in genes of the RAD52 epistasis group reveal that the role of each protein is not necessarily the same as that of the corresponding yeast gene product. This review addresses the roles and mechanisms of homologous recombination-mediated repair with a special emphasis on differences between yeast and vertebrate cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heteroduplex joints are general intermediates of homologous genetic recombination in DNA genomes. A heteroduplex joint is formed between a single-stranded region (or tail), derived from a cleaved parental double-stranded DNA, and homologous regions in another parental double-stranded DNA, in a reaction mediated by the RecA/Rad51-family of proteins. In this reaction, a RecA/Rad51-family protein first forms a filamentous complex with the single-stranded DNA, and then interacts with the double-stranded DNA in a search for homology. Studies of the three-dimensional structures of single-stranded DNA bound either to Escherichia coli RecA or Saccharomyces cerevisiae Rad51 have revealed a novel extended DNA structure. This structure contains a hydrophobic interaction between the 2′ methylene moiety of each deoxyribose and the aromatic ring of the following base, which allows bases to rotate horizontally through the interconversion of sugar puckers. This base rotation explains the mechanism of the homology search and base-pair switch between double-stranded and single-stranded DNA during the formation of heteroduplex joints. The pivotal role of the 2′ methylene-base interaction in the heteroduplex joint formation is supported by comparing the recombination of RNA genomes with that of DNA genomes. Some simple organisms with DNA genomes induce homologous recombination when they encounter conditions that are unfavorable for their survival. The extended DNA structure confers a dynamic property on the otherwise chemically and genetically stable double-stranded DNA, enabling gene segment rearrangements without disturbing the coding frame (i.e., protein-segment shuffling). These properties may give an extensive evolutionary advantage to DNA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous studies have shown that inactivation of the MutS or MutL mismatch repair enzymes increases the efficiency of homeologous recombination between Escherichia coli and Salmonella typhimurium and between S. typhimurium and Salmonella typhi. However, even in mutants defective for mismatch repair the recombination frequencies are 102- to 103-fold less than observed during homologous recombination between a donor and recipient of the same species. In addition, the length of DNA exchanged during transduction between S. typhimurium and S. typhi is less than in transductions between strains of S. typhimurium. In homeologous transductions, mutations in the recD gene increased the frequency of transduction and the length of DNA exchanged. Furthermore, in mutS recD double mutants the frequency of homeologous recombination was nearly as high as that seen during homologous recombination. The phenotypes of the mutants indicate that the gene products of mutS and recD act independently. Because S. typhimurium and S. typhi are ≈98–99% identical at the DNA sequence level, the inhibition of recombination is probably not due to a failure of RecA to initiate strand exchange. Instead, these results suggest that mismatches act at a subsequent step, possibly by slowing the rate of branch migration. Slowing the rate of branch migration may stimulate helicase proteins to unwind rather than extend the heteroduplex and leave uncomplexed donor DNA susceptible to further degradation by RecBCD exonuclease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nucleotide excision repair proteins have been implicated in genetic recombination by experiments in Saccharomyces cerevisiae and Drosophila melanogaster, but their role, if any, in mammalian cells is undefined. To investigate the role of the nucleotide excision repair gene ERCC1, the hamster homologue to the S. cerevisiae RAD10 gene, we disabled the gene by targeted knockout. Partial tandem duplications of the adenine phosphoribosyltransferase (APRT) gene then were constructed at the endogenous APRT locus in ERCC1− and ERCC1+ cells. To detect the full spectrum of gene-altering events, we used a loss-of-function assay in which the parental APRT+ tandem duplication could give rise to APRT− cells by homologous recombination, gene rearrangement, or point mutation. Measurement of rates and analysis of individual APRT− products indicated that gene rearrangements (principally deletions) were increased at least 50-fold, whereas homologous recombination was affected little. The formation of deletions is not caused by a general effect of the ERCC1 deficiency on gene stability, because ERCC1− cell lines with a single wild-type copy of the APRT gene yielded no increase in deletions. Thus, deletion formation is dependent on the tandem duplication, and presumably the process of homologous recombination. Recombination-dependent deletion formation in ERCC1− cells is supported by a significant decrease in a particular class of crossover products that are thought to arise by repair of a heteroduplex intermediate in recombination. We suggest that the ERCC1 gene product in mammalian cells is involved in the processing of heteroduplex intermediates in recombination and that the misprocessed intermediates in ERCC1− cells are repaired by illegitimate recombination.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Agrobacterium tumefaciens can transfer part of its Ti plasmid, the T-DNA, to plant cells where it integrates into the nuclear genome via illegitimate recombination. Integration of the T-DNA results in small deletions of the plant target DNA, and may lead to truncation of the T-DNA borders and the production of filler DNA. We showed previously that T-DNA can also be transferred from A. tumefaciens to Saccharomyces cerevisiae and integrates into the yeast genome via homologous recombination. We show here that when the T-DNA lacks homology with the S. cerevisiae genome, it integrates at random positions via illegitimate recombination. From 11 lines the integrated T-DNA was cloned back to Escherichia coli along with yeast flanking sequences. The T-DNA borders and yeast DNA flanking the T-DNA were sequenced and characterized. It was found that T-DNA integration had resulted in target DNA deletions and sometimes T-DNA truncations or filler DNA formation. Therefore, the molecular mechanism of illegitimate recombination by which T-DNA integrates in higher and lower eukaryotes seems conserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Homologous recombination hotspots increase the frequency of recombination in nearby DNA. The M26 hotspot in the ade6 gene of Schizosaccharomyces pombe is a meiotic hotspot with a discrete, cis-acting nucleotide sequence (5′-ATGACGT-3′) defined by extensive mutagenesis. A heterodimeric M26 DNA binding protein, composed of subunits Mts1 and Mts2, has been identified and purified 40,000-fold. Cloning, disruption, and genetic analyses of the mts genes demonstrate that the Mts1/Mts2 heterodimer is essential for hotspot activity. This provides direct evidence that a specific trans-acting factor, binding to a cis-acting site with a unique nucleotide sequence, is required to activate this meiotic hotspot. Intriguingly, the Mts1/Mts2 protein subunits are identical to the recently described transcription factors Atf1 (Gad7) and Pcr1, which are required for a variety of stress responses. However, we report differential dependence on the Mts proteins for hotspot activation and stress response, suggesting that these proteins are multifunctional and have distinct activities. Furthermore, ade6 mRNA levels are equivalent in hotspot and nonhotspot meioses and do not change in mts mutants, indicating that hotspot activation is not a consequence of elevated transcription levels. These findings suggest an intimate but separable link between the regulation of transcription and meiotic recombination. Other studies have recently shown that the Mts1/Mts2 protein and M26 sites are involved in meiotic recombination elsewhere in the S. pombe genome, suggesting that these factors help regulate the timing and distribution of homologous recombination.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The human Xrcc3 protein is involved in the repair of damaged DNA through homologous recombination, in which homologous pairing is a key step. The Rad51 protein is believed to be the only protein factor that promotes homologous pairing in recombinational DNA repair in mitotic cells. In the brain, however, Rad51 expression is extremely low, whereas XRCC3, a human homologue of Saccharomyces cerevisiae RAD57 that activates the Rad51-dependent homologous pairing with the yeast Rad55 protein, is expressed. In this study, a two-hybrid analysis conducted with the use of a human brain cDNA library revealed that the major Xrcc3-interacting protein is a Rad51 paralog, Rad51C/Rad51L2. The purified Xrcc3⋅Rad51C complex, which shows apparent 1:1 stoichiometry, was found to catalyze the homologous pairing. Although the activity is reduced, the Rad51C protein alone also catalyzed homologous pairing, suggesting that Rad51C is a catalytic subunit for homologous pairing. The DNA-binding activity of Xrcc3⋅Rad51C was drastically decreased in the absence of Xrcc3, indicating that Xrcc3 is important for the DNA binding of Xrcc3⋅Rad51C. Electron microscopic observations revealed that Xrcc3⋅Rad51C and Rad51C formed similar filamentous structures with circular single-stranded DNA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Crossing over by homologous recombination between monomeric circular chromosomes generates dimeric circular chromosomes that cannot be segregated to daughter cells during cell division. In Escherichia coli, homologous recombination is biased so that most homologous recombination events generate noncrossover monomeric circular chromosomes. This bias is lost in ruv mutants. A novel protein, RarA, which is highly conserved in eubacteria and eukaryotes and is related to the RuvB and the DnaX proteins, γ and τ, may influence the formation of crossover recombinants. Those dimeric chromosomes that do form are converted to monomers by Xer site-specific recombination at the recombination site dif, located in the replication terminus region of the E. coli chromosome. The septum-located FtsK protein, which coordinates cell division with chromosome segregation, is required for a complete Xer recombination reaction at dif. Only correctly positioned dif sites present in a chromosomal dimer are able to access septum-located FtsK. FtsK acts by facilitating a conformational change in the Xer recombination Holliday junction intermediate formed by XerC recombinase. This change provides a substrate for XerD, which then completes the recombination reaction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Maintenance of genomic integrity and stable transmission of genetic information depend on a number of DNA repair processes. Failure to faithfully perform these processes can result in genetic alterations and subsequent development of cancer and other genetic diseases. In the eukaryote Saccharomyces cerevisiae, homologous recombination is the major pathway for repairing DNA double-strand breaks. The key role played by Rad52 in this pathway has been attributed to its ability to seek out and mediate annealing of homologous DNA strands. In this study, we find that S. cerevisiae Rad52 fused to green fluorescent protein (GFP) is fully functional in DNA repair and recombination. After induction of DNA double-strand breaks by γ-irradiation, meiosis, or the HO endonuclease, Rad52-GFP relocalizes from a diffuse nuclear distribution to distinct foci. Interestingly, Rad52 foci are formed almost exclusively during the S phase of mitotic cells, consistent with coordination between recombinational repair and DNA replication. This notion is further strengthened by the dramatic increase in the frequency of Rad52 focus formation observed in a pol12-100 replication mutant and a mec1 DNA damage checkpoint mutant. Furthermore, our data indicate that each Rad52 focus represents a center of recombinational repair capable of processing multiple DNA lesions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Studies of recombination-dependent replication (RDR) in the T4 system have revealed the critical roles played by mediator proteins in the timely and productive loading of specific enzymes onto single-stranded DNA (ssDNA) during phage RDR processes. The T4 recombination mediator protein, uvsY, is necessary for the proper assembly of the T4 presynaptic filament (uvsX recombinase cooperatively bound to ssDNA), leading to the recombination-primed initiation of leading strand DNA synthesis. In the lagging strand synthesis component of RDR, replication mediator protein gp59 is required for the assembly of gp41, the DNA helicase component of the T4 primosome, onto lagging strand ssDNA. Together, uvsY and gp59 mediate the productive coupling of homologous recombination events to the initiation of T4 RDR. UvsY promotes presynaptic filament formation on 3′ ssDNA-tailed chromosomes, the physiological primers for T4 RDR, and recent results suggest that uvsY also may serve as a coupling factor between presynapsis and the nucleolytic resection of double-stranded DNA ends. Other results indicate that uvsY stabilizes uvsX bound to the invading strand, effectively preventing primosome assembly there. Instead, gp59 directs primosome assembly to the displaced strand of the D loop/replication fork. This partitioning mechanism enforced by the T4 recombination/replication mediator proteins guards against antirecombination activity of the helicase component and ensures that recombination intermediates formed by uvsX/uvsY will efficiently be converted into semiconservative DNA replication forks. Although the major mode of T4 RDR is semiconservative, we present biochemical evidence that a conservative “bubble migration” mode of RDR could play a role in lesion bypass by the T4 replication machinery.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two major pathways of recombination-dependent DNA replication, “join-copy” and “join-cut-copy,” can be distinguished in phage T4: join-copy requires only early and middle genes, but two late proteins, endonuclease VII and terminase, are uniquely important in the join-cut-copy pathway. In wild-type T4, timing of these pathways is integrated with the developmental program and related to transcription and packaging of DNA. In primase mutants, which are defective in origin-dependent lagging-strand DNA synthesis, the late pathway can bypass the lack of primers for lagging-strand DNA synthesis. The exquisitely regulated synthesis of endo VII, and of two proteins from its gene, explains the delay of recombination-dependent DNA replication in primase (as well as topoisomerase) mutants, and the temperature-dependence of the delay. Other proteins (e.g., the single-stranded DNA binding protein and the products of genes 46 and 47) are important in all recombination pathways, but they interact differently with other proteins in different pathways. These homologous recombination pathways contribute to evolution because they facilitate acquisition of any foreign DNA with limited sequence homology during horizontal gene transfer, without requiring transposition or site-specific recombination functions. Partial heteroduplex repair can generate what appears to be multiple mutations from a single recombinational intermediate. The resulting sequence divergence generates barriers to formation of viable recombinants. The multiple sequence changes can also lead to erroneous estimates in phylogenetic analyses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In most organisms homologous recombination is vital for the proper segregation of chromosomes during meiosis, the formation of haploid sex cells from diploid precursors. This review compares meiotic recombination and chromosome segregation in the fission yeast Schizosaccharomyces pombe and the distantly related budding yeast Saccharomyces cerevisiae, two especially tractable microorganisms. Certain features, such as the occurrence of DNA breaks associated with recombination, appear similar, suggesting that these features may be common in eukaryotes. Other features, such as the role of these breaks and the ability of chromosomes to segregate faithfully in the absence of recombination, appear different, suggesting multiple solutions to the problems faced in meiosis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A procedure of reversible immortalization of primary cells was devised by retrovirus-mediated transfer of an oncogene that could be subsequently excised by site-specific recombination. This study focused on the early stages of immortalization: global induction of proliferation and life span extension of cell populations. Comparative analysis of Cre/LoxP and FLP/FRT recombination in this system indicated that only Cre/LoxP operates efficiently in primary cells. Pure populations of cells in which the oncogene is permanently excised were obtained, following differential selection of the cells. Cells reverted to their preimmortalized state, as indicated by changes in growth characteristics and p53 levels, and their fate conformed to the telomere hypothesis of replicative cell senescence. By permitting temporary and controlled expansion of primary cell populations without retaining the transferred oncogene, this strategy may facilitate gene therapy manipulations of cells unresponsive to exogenous growth factors and make practical gene targeting by homologous recombination in somatic cells. The combination of retroviral transfer and site-specific recombination should also extend gene expression studies to situations previously inaccessible to experimentation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gene disruptions and deletions of up to 20kb have been generated by homologous recombination with appropriate targeting vectors in murine embryonic stem (ES) cells. Because we could not obtain a deletion of about 200 kb in the mouse amyloid precursor protein gene by the classical technique, we employed strategies involving the insertion of loxP sites upstream and downstream of the region to be deleted by homologous recombination and elicited excision of the loxP-flanked region by introduction of a Cre expression vector into the ES cells. In the first approach, the loxP sequences were inserted in two successive steps and after each step, ES cell clones were isolated and characterized. Deletion of the loxP-flanked sequence was accomplished by introducing the cre gene in a third step. In the second approach, ES cells containing the upstream loxP cassette were electroporated simultaneously with the downstream loxP targeting vector and the Cre expression plasmid. ES cells were obtained that gave rise to chimeric mice capable of germ-line transmission of the deleted amyloid precursor protein allele.