32 resultados para Histone Deacetylase Complexes


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The cyclin-dependent kinase inhibitor p21(WAF1/CIP1) inhibits proliferation both in vitro and in vivo, and overexpression of p21 in normal and tumor cell lines results in cell cycle arrest. In contrast, ectopic expression of Myc alleviates G1 cell cycle arrest. Recent studies showed that Myc can repress p21 transcription, thereby overriding a p21-mediated cell cycle checkpoint. We found that activation of a Myc-estrogen receptor fusion protein by 4-hydroxytamoxifen in mouse cells resulted in suppression of endogenous p21 transcription. This effect was observed in the absence of de novo protein synthesis and was independent of histone deacetylase activity. In transient transfection studies, Myc effectively repressed p21 promoter constructs containing only 119 bp of sequence upstream of the transcription start site. This region contains multiple Sp1-binding sites and a potential initiator element, but no canonical Myc DNA-binding sites. Deletion of the potential initiator element does not affect repression of the p21 promoter by c-Myc. Coimmunoprecipitation and glutathione S-transferase pull-down experiments demonstrate that c-Myc may form complexes with Sp1/Sp3. We found that the central region of c-Myc interacts with the zinc finger domain of Sp1. Because Sp1 is required for p21 transcription, it is possible that Myc may down-regulate p21 transcription, at least in part, by sequestering Sp1. Repression of the p21 promoter may contribute to the ability of c-Myc to promote cell proliferation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mouse mammary tumor virus (MMTV) promoter is regulated by steroid hormones through a hormone-responsive region that is organized in a positioned nucleosome. Hormone induction leads to a structural change of this nucleosome which makes its DNA more sensitive to cleavage by DNase I and enables simultaneous binding of all relevant transcription factors. In cells carrying either episomal or chromosomally integrated MMTV promoters, moderate acetylation of core histones, generated by treatment with low concentrations of the histone deacetylase inhibitors sodium butyrate or trichostatin A, enhances transcription from the MMTV promoter in the absence of hormone and potentiates transactivation by either glucocorticoids or progestins. At higher concentrations, histone deacetylase inhibitors reduce basal and hormone induced MMTV transcription. Inducing inhibitor concentrations lead to the same type of nucleosomal DNase I hypersensitivity as hormone treatment, suggesting that moderate acetylation of core histone activates the MMTV promoter by mechanisms involving chromatin remodeling similar to that generated by the inducing hormones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A diet high in fiber is associated with a decreased incidence and growth of colon cancers. Butyrate, a four-carbon short-chain fatty acid product of fiber fermentation within the colon, appears to mediate these salutary effects. We sought to determine the molecular mechanism by which butyrate mediates growth inhibition of colonic cancer cells and thereby to elucidate the molecular link between a high-fiber diet and the arrest of colon carcinogenesis. We show that concomitant with growth arrest, butyrate induces p21 mRNA expression in an immediate-early fashion, through transactivation of a promoter cis-element(s) located within 1.4 kb of the transcriptional start site, independent of p53 binding. Studies using the specific histone hyperacetylating agent, trichostatin A, and histone deacetylase 1 indicate that growth arrest and p21 induction occur through a mechanism involving histone hyperacetylation. We show the critical importance of p21 in butyrate-mediated growth arrest by first confirming that stable overexpression of the p21 gene is able to cause growth arrest in the human colon carcinoma cell line, HT-29. Furthermore, using p21-deleted HCT116 human colon carcinoma cells, we provide convincing evidence that p21 is required for growth arrest to occur in response to histone hyperacetylation, but not for serum starvation nor postconfluent growth. Thus, p21 appears to be a critical effector of butyrate-induced growth arrest in colonic cancer cells, and may be an important molecular link between a high-fiber diet and the prevention of colon carcinogenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The BTB domain (also known as the POZ domain) is an evolutionarily conserved protein–protein interaction motif found at the N terminus of 5–10% of C2H2-type zinc-finger transcription factors, as well as in some actin-associated proteins bearing the kelch motif. Many BTB proteins are transcriptional regulators that mediate gene expression through the control of chromatin conformation. In the human promyelocytic leukemia zinc finger (PLZF) protein, the BTB domain has transcriptional repression activity, directs the protein to a nuclear punctate pattern, and interacts with components of the histone deacetylase complex. The association of the PLZF BTB domain with the histone deacetylase complex provides a mechanism of linking the transcription factor with enzymatic activities that regulate chromatin conformation. The crystal structure of the BTB domain of PLZF was determined at 1.9 Å resolution and reveals a tightly intertwined dimer with an extensive hydrophobic interface. Approximately one-quarter of the monomer surface area is involved in the dimer intermolecular contact. These features are typical of obligate homodimers, and we expect the full-length PLZF protein to exist as a branched transcription factor with two C-terminal DNA-binding regions. A surface-exposed groove lined with conserved amino acids is formed at the dimer interface, suggestive of a peptide-binding site. This groove may represent the site of interaction of the PLZF BTB domain with nuclear corepressors or other nuclear proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nonpathogenic, resident bacteria participate in the pathogenesis of inflammation in the small intestine, but the molecular messages produced by such bacteria are unknown. Inflammatory responses involve the recruitment of specific leukocyte subsets. We, therefore, hypothesized that butyrate, a normal bacterial metabolite, may modulate chemokine secretion by epithelial cells, by amplifying their response to proinflammatory signals. We studied the expression of the chemokine, macrophage inflammatory protein-2 (MIP-2) by the rat small intestinal epithelial cell line, IEC-6. Cells were stimulated with lipopolysaccharide or with interleukin 1β (IL-1β) and incubated with sodium butyrate. Acetylation of histones was examined in Triton X acetic acid–urea gels by PAGE. Unstimulated IEC-6 cells did not secrete MIP-2. However, lipopolysaccharide and IL-1β induced MIP-2 expression. Butyrate enhanced MIP-2 secretion both in lipopolysaccharide-stimulated and IL-1β-stimulated enterocytes; but butyrate alone did not induce MIP-2 expression. Butyrate increased the acetylation of histones extracted from the nuclei of IEC-6 cells. Furthermore, acetylation of histones (induced by trichostatin A, a specific inhibitor of histone deacetylase) enhanced MIP-2 expression by cells stimulated with IL-1β. In conclusion, trichostatin A reproduced the effects of butyrate on MIP-2 secretion. Butyrate, therefore, increases MIP-2 secretion in stimulated cells by increasing histone acetylation. We speculate that butyrate carries information from bacteria to epithelial cells. Epithelial cells transduce this signal through histone deacetylase, modulating the secretion of chemokines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The LAZ3/BCL6 (lymphoma-associated zinc finger 3/B cell lymphomas 6) gene frequently is altered in non-Hodgkin lymphomas. It encodes a sequence-specific DNA binding transcriptional repressor that contains a conserved N-terminal domain, termed BTB/POZ (bric-à-brac tramtrack broad complex/pox viruses and zinc fingers). Using a yeast two-hybrid screen, we show here that the LAZ3/BCL6 BTB/POZ domain interacts with the SMRT (silencing mediator of retinoid and thyroid receptor) protein. SMRT originally was identified as a corepressor of unliganded retinoic acid and thyroid receptors and forms a repressive complex with a mammalian homolog of the yeast transcriptional repressor SIN3 and the HDAC-1 histone deacetylase. Protein binding assays demonstrate that the LAZ3/BCL6 BTB/POZ domain directly interacts with SMRT in vitro. Furthermore, DNA-bound LAZ3/BCL6 recruits SMRT in vivo, and both overexpressed proteins completely colocalize in nuclear dots. Finally, overexpression of SMRT enhances the LAZ3/BCL6-mediated repression. These results define SMRT as a corepressor of LAZ3/BCL6 and suggest that LAZ3/BCL6 and nuclear hormone receptors repress transcription through shared mechanisms involving SMRT recruitment and histone deacetylation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The t(8;21) translocation between two genes known as AML1 and ETO is seen in approximately 12–15% of all acute myeloid leukemia (AML) and is the second-most-frequently observed nonrandom genetic alteration associated with AML. AML1 up-regulates a number of target genes critical to normal hematopoiesis, whereas the AML1/ETO fusion interferes with this trans-activation. We discovered that the fusion partner ETO binds to the human homolog of the murine nuclear receptor corepressor (N-CoR). The interaction is mediated by two unusual zinc finger motifs present at the carboxyl terminus of ETO. Human N-CoR (HuN-CoR), which we cloned and sequenced in its entirety, encodes a 2,440-amino acid polypeptide and has a central domain that binds ETO. N-CoR, mammalian Sin3 (mSin3A and B), and histone deacetylase 1 (HDAC1) form a complex that alters chromatin structure and mediates transcriptional repression by nuclear receptors and by a number of oncoregulatory proteins. We found that ETO, through its interaction with the N-CoR/mSin3/HDAC1 complex, is also a potent repressor of transcription. This observation provides a mechanism for how the AML1/ETO fusion may inhibit expression of AML1-responsive target genes and disturb normal hematopoiesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In systemic lupus erythematosus (SLE), T helper cells exhibit increased and prolonged expression of cell-surface CD40 ligand (CD154), spontaneously overproduce interleukin-10 (IL-10), but underproduce interferon-gamma (IFN-γ). We tested the hypothesis that the imbalance of these gene products reflects skewed expression of CD154, IL-10, and IFN-γ genes. Here, we demonstrate that the histone deacetylase inhibitor, trichostatin A, significantly down-regulated CD154 and IL-10 and up-regulated IFN-γ gene expression in SLE T cells. This reversal corrected the aberrant expression of these gene products, thereby enhancing IFN-γ production and inhibiting IL-10 and CD154 expression. That trichostatin A can simultaneously reverse the skewed expression of multiple genes implicated in the immunopathogenesis of SLE suggests that this pharmacologic agent may be a candidate for the treatment of this autoimmune disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tcf/Lef family transcription factors are the downstream effectors of the Wingless/Wnt signal transduction pathway. Upon Wingless/Wnt signalling, β-catenin translocates to the nucleus, interacts with Tcf (1–3) and thus activates transcription of target genes (4,5). Tcf factors also interact with members of the Groucho (Grg/TLE) family of transcriptional co-repressors (6). We have now tested all known mammalian Groucho family members for their ability to interact specifically with individual Tcf/Lef family members. Transcriptional activation by any Tcf could be repressed by Grg-1, Grg-2/TLE-2, Grg-3 and Grg-4 in a reporter assay. Specific interactions between Tcf and Grg proteins may be achieved in vivo by tissue- or cell type-limited expression. To address this, we determined the expression of all Tcf and Grg/TLE family members in a panel of cell lines. Within any cell line, several Tcfs and TLEs are co-expressed. Thus, redundancy in Tcf/Grg interactions appears to be the rule. The ‘long’ Groucho family members containing five domains are repressors of Tcf-mediated transactivation, whereas Grg-5, which only contains the first two domains, acts as a de-repressor. As previously shown for Drosophila Groucho, we show that long Grg proteins interact with histone deacetylase-1. Although Grg-5 contains the GP homology domain that mediates HDAC binding in long Grg proteins, Grg-5 fails to bind this co-repressor, explaining how it can de-repress transcription.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Defined model systems consisting of physiologically spaced arrays of H3/H4 tetramer⋅5S rDNA complexes have been assembled in vitro from pure components. Analytical hydrodynamic and electrophoretic studies have revealed that the structural features of H3/H4 tetramer arrays closely resemble those of naked DNA. The reptation in agarose gels of H3/H4 tetramer arrays is essentially indistinguishable from naked DNA, the gel-free mobility of H3/H4 tetramer arrays relative to naked DNA is reduced by only 6% compared with 20% for nucleosomal arrays, and H3/H4 tetramer arrays are incapable of folding under ionic conditions where nucleosomal arrays are extensively folded. We further show that the cognate binding sites for transcription factor TFIIIA are significantly more accessible when the rDNA is complexed with H3/H4 tetramers than with histone octamers. These results suggest that the processes of DNA replication and transcription have evolved to exploit the unique structural properties of H3/H4 tetramer arrays.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Somatic histone H1 reduces both the rate and extent of DNA replication in Xenopus egg extract. We show here that H1 inhibits replication directly by reducing the number of replication forks, but not the rate of fork progression, in Xenopus sperm nuclei. Density substitution experiments demonstrate that those forks that are active in H1 nuclei elongate to form large tracts of fully replicated DNA, indicating that inhibition is due to a reduction in the frequency of initiation and not the rate or extent of elongation. The observation that H1 dramatically reduces the number of replication foci in sperm nuclei supports this view. The establishment of replication competent DNA in egg extract requires the assembly of prereplication complexes (pre-RCs) on sperm chromatin. H1 reduces binding of the pre-RC proteins, XOrc2, XCdc6, and XMcm3, to chromatin. Replication competence can be restored in these nuclei, however, only under conditions that promote the loss of H1 from chromatin and licensing of the DNA. Thus, H1 inhibits replication in egg extract by preventing the assembly of pre-RCs on sperm chromatin, thereby reducing the frequency of initiation. These data raise the interesting possibility that H1 plays a role in regulating replication origin use during Xenopus development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Here, we describe the identification and characterization of a nuclear body (matrix-associated deacetylase body) whose formation and integrity depend on deacetylase activity. Typically, there are 20–40 0.5-μM bodies per nucleus, although the size and number can vary substantially. The structure appears to contain both class I and the recently described class II histone deacetylases (HDAC)5 and 7 along with the nuclear receptor corepressors SMRT (silencing mediator for retinoid and thyroid receptor) and N-CoR (nuclear receptor corepressor). Addition of the deacetylase inhibitors trichostatin A and sodium butyrate completely disrupt these nuclear bodies, providing a demonstration that the integrity of a nuclear body is enzyme dependent. We demonstrate that HDAC5 and 7 can associate with at least 12 distinct proteins, including several members of the NuRD and Sin3A repression complexes, and appear to define a new but related complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Each of the core histone proteins within the nucleosome has a central “structured” domain that comprises the spool onto which the DNA superhelix is wrapped and an N-terminal “tail” domain in which the structure and molecular interactions have not been rigorously defined. Recent studies have shown that the N-terminal domains of core histones probably contact both DNA and proteins within the nucleus and that these interactions play key roles in the regulation of nuclear processes (such as transcription and replication) and are critical in the formation of the chromatin fiber. An understanding of these complex mechanisms awaits identification of the DNA or protein sites within chromatin contacted by the tail domains. To this end, we have developed a site-specific histone protein–DNA photocross-linking method to identify the DNA binding sites of the N-terminal domains within chromatin complexes. With this approach, we demonstrate that the N-terminal tail of H2A binds DNA at two defined locations within isolated nucleosome cores centered around a position ≈40 bp from the nucleosomal dyad and that this tail probably adopts a defined structure when bound to DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enhancers are defined by their ability to stimulate gene activity from remote sites and their requirement for promoter-proximal upstream activators to activate transcription. Here we demonstrate that recruitment of the p300/CBP-associated factor PCAF to a reporter gene is sufficient to stimulate promoter activity. The PCAF-mediated stimulation of transcription from either a distant or promoter-proximal position depends on the presence of an upstream activator (Sp1). These data suggest that acetyltransferase activity may be a primary component of enhancer function, and that recruitment of polymerase and enhancement of transcription are separable. Transcriptional activation by PCAF requires both its acetyltransferase activity and an additional activity within its N terminus. We also show that the simian virus 40 enhancer and PCAF itself are sufficient to counteract Mad-mediated repression. These results are compatible with recent models in which gene activity is regulated by the competition between deacetylase-mediated repression and enhancer-mediated recruitment of acetyltransferases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Arabidopsis CBF transcriptional activators bind to the CRT/DRE regulatory element present in the promoters of many cold-regulated genes and stimulate their transcription. Expression of the CBF1 proteins in yeast activates reporter genes carrying a minimal promoter with the CRT/DRE as an upstream regulatory element. Here we report that this ability of CBF1 is dependent upon the activities of three key components of the yeast Ada and SAGA complexes, namely the histone acetyltransferase (HAT) Gcn5 and the transcriptional adaptor proteins Ada2 and Ada3. This result suggested that CBF1 might function through the action of similar complexes in Arabidopsis. In support of this hypothesis we found that Arabidopsis has a homolog of the GCN5 gene and two homologs of ADA2, the first report of multiple ADA2 genes in an organism. The Arabidopsis GCN5 protein has intrinsic HAT activity and can physically interact in vitro with both the Arabidopsis ADA2a and ADA2b proteins. In addition, the CBF1 transcriptional activator can interact with the Arabidopsis GCN5 and ADA2 proteins. We conclude that Arabidopsis encodes HAT-containing adaptor complexes that are related to the Ada and SAGA complexes of yeast and propose that the CBF1 transcriptional activator functions through the action of one or more of these complexes.