32 resultados para Helicobacter pylori genotypes
Resumo:
Objective: To find out if chronic infection with Helicobacter pylori is correlated with risk factors for coronary heart disease.
Resumo:
Objective: To determine how small differences in the efficacy and cost of two antibiotic regimens to eradicate Helicobacter pylori can affect the overall cost effectiveness of H pylori eradication in duodenal ulcer disease.
Resumo:
Helicobacter pylori is a Gram-negative bacterial pathogen with a small genome of 1.64–1.67 Mb. More than 20 putative DNA restriction-modification (R-M) systems, comprising more than 4% of the total genome, have been identified in the two completely sequenced H. pylori strains, 26695 and J99, based on sequence similarities. In this study, we have investigated the biochemical activities of 14 Type II R-M systems in H. pylori 26695. Less than 30% of the Type II R-M systems in 26695 are fully functional, similar to the results obtained from strain J99. Although nearly 90% of the R-M genes are shared by the two H. pylori strains, different sets of these R-M genes are functionally active in each strain. Interestingly, all strain-specific R-M genes are active, whereas most shared genes are inactive. This agrees with the notion that strain-specific genes have been acquired more recently through horizontal transfer from other bacteria and selected for function. Thus, they are less likely to be impaired by random mutations. Our results also show that H. pylori has extremely diversified R-M systems in different strains, and that the diversity may be maintained by constantly acquiring new R-M systems and by inactivating and deleting the old ones.
Resumo:
The consequences of Helicobacter pylori attachment to human gastric cells were examined by transmission electron microscopy and immunofluorescence microscopy. H. pylori attachment resulted in (i) effacement of microvilli at the site of attachment, (ii) cytoskeletal rearrangement directly beneath the bacterium, and (iii) cup/pedestal formation at the site of attachment. Double-immunofluorescence studies revealed that the cytoskeletal components actin, alpha-actinin, and talin are involved in the process. Immunoblot analysis showed that binding of H. pylori to AGS cells induced tyrosine phosphorylation of two host cell proteins of 145 and 105 kDa. These results indicate that attachment of H. pylori to gastric epithelial cells resembles that of enteropathogenic Escherichia coli. Coccoid H. pylori, which are thought to be terminally differentiated bacterial forms, are capable of binding and inducing cellular changes of the same sort as spiral H. pylori, including tyrosine phosphorylation of host proteins.
Resumo:
Helicobacter pylori is an important etiologic agent of gastroduodenal disease. In common with other organisms, H. pylori bacteria express heat shock proteins that share homologies with the GroES-GroEL class of proteins from Escherichia coli. We have assessed the heat shock proteins of H. pylori as potential protective antigens in a murine model of gastric Helicobacter infection. Orogastric immunization of mice with recombinant H. pylori GroES- and GroEL-like proteins protected 80% (n = 20) and 70% (n = 10) of animals, respectively, from a challenge dose of 10(4) Helicobacter felis bacteria (compared to control mice, P = 0.0042 and P = 0.0904, respectively). All mice (n = 19) that were immunized with a dual antigen preparation, consisting of H. pylori GroES-like protein and the B subunit of H. pylori urease, were protected against infection. This represented a level of protection equivalent to that provided by a sonicated Helicobacter extract (P = 0.955). Antibodies directed against the recombinant H. pylori antigens were predominantly of the IgG1 class, suggesting that a type 2 T-helper cell response was involved in protection. This work reports a protein belonging to the GroES class of heat shock proteins that was shown to induce protective immunity. In conclusion, GroES-like and urease B-subunit proteins have been identified as potential components of a future H. pylori subunit vaccine.
Resumo:
Immigration is an important force shaping the social structure, evolution, and genetics of populations. A statistical method is presented that uses multilocus genotypes to identify individuals who are immigrants, or have recent immigrant ancestry. The method is appropriate for use with allozymes, microsatellites, or restriction fragment length polymorphisms (RFLPs) and assumes linkage equilibrium among loci. Potential applications include studies of dispersal among natural populations of animals and plants, human evolutionary studies, and typing zoo animals of unknown origin (for use in captive breeding programs). The method is illustrated by analyzing RFLP genotypes in samples of humans from Australian, Japanese, New Guinean, and Senegalese populations. The test has power to detect immigrant ancestors, for these data, up to two generations in the past even though the overall differentiation of allele frequencies among populations is low.
Resumo:
The human polyomavirus JC (JCV) causes the central nervous system demyelinating disease progressive multifocal leukoencephalopathy. Previously, we showed that 40% of Caucasians in the United States excrete JCV in the urine as detected by PCR. We have now studied 68 Navaho from New Mexico, 25 Flathead from Montana, and 29 Chamorro from Guam. By using PCR amplification of a fragment of the VP1 gene, JCV DNA was detected in the urine of 45 (66%) Navaho, 14 (56%) Flathead, and 20 (69%) Chamorro. Genotyping of viral DNAs in these cohorts by cycle sequencing showed predominantly type 2 (Asian), rather than type 1 (European). Type 1 is the major type in the United States and Hungary. Type 2 can be further subdivided into 2A, 2B, and 2C. Type 2A is found in China and Japan. Type 2B is a subtype related to the East Asian type, and is now found in Europe and the United States. The large majority (56–89%) of strains excreted by Native Americans and Pacific Islanders were the type 2A subtype, consistent with the origin of these strains in Asia. These findings indicate that JCV infection of Native Americans predates contact with Europeans, and likely predates migration of Amerind ancestors across the Bering land bridge around 12,000–30,000 years ago. If JCV had already differentiated into stable modern genotypes and subtypes prior to first settlement, the origin of JCV in humans may date from 50,000 to 100,000 years ago or more. We conclude that JCV may have coevolved with the human species, and that it provides a convenient marker for human migrations in both prehistoric and modern times.