34 resultados para HLA-DRB1* molecules
Resumo:
The peptides bound to class II major histocompatibility complex (MHC) molecules extend out both ends of the peptide binding groove. This structural feature provided the opportunity to design multivalent polypeptide chains that cross-link class II MHC molecules through multiple, repetitive MHC binding sites. By using recombinant techniques, polypeptide oligomers were constructed that consist of up to 32 copies of an HLA-DR1-restricted T cell epitope. The epitope HA306–318, derived from influenza virus hemagglutinin, was connected by 12- to 36-aa long spacer sequences. These oligomers were found to cross-link soluble HLA-DR1 molecules efficiently and, upon binding to the MHC molecules of a monocyte line, to trigger signal transduction indicated by the enhanced expression of some cell surface molecules. A particularly strong effect was evident in the T cell response. A hemagglutinin-specific T cell clone recognized these antigens at concentrations up to three to four orders of magnitude lower than that of the peptide or the hemagglutinin protein. Both signal transduction in the monocyte and the proliferative response of the T cell were affected greatly by the length of the oligomer (i.e., the number of repetitive units) and the distance of the epitopes within the oligomer (spacing). Thus, the formation of defined clusters of T cell receptor/MHC/peptide antigen complexes appears to be crucial for triggering the immune response and can be used to enhance the antigenicity of a peptide antigen by oligomerizing the epitope.
Resumo:
The binding of killer cell Ig-like Receptors (KIR) to their Class I MHC ligands was shown previously to be characterized by extremely rapid association and dissociation rate constants. During experiments to investigate the biochemistry of receptor–ligand binding in more detail, the kinetic parameters of the interaction were observed to alter dramatically in the presence of Zn2+ but not other divalent cations. The basis of this phenomenon is Zn2+-induced multimerization of the KIR molecules as demonstrated by BIAcore, analytical ultracentrifugation, and chemical cross-linking experiments. Zn2+-dependent multimerization of KIR may be critical for formation of the clusters of KIR and HLA-C molecules, the “natural killer (NK) cell immune synapse,” observed at the site of contact between the NK cell and target cell.
Resumo:
Position 57 in the beta chain of HLA class II molecules maintains an Asp/non-Asp dimorphism that has been conserved through evolution and is implicated in susceptibility to some autoimmune diseases. The latter effect may be due to the influence of this residue on the ability of class II alleles to bind specific pathogenic peptides. We utilized highly homologous pairs of both DR and DQ alleles that varied at residue 57 to investigate the impact of this dimorphism on binding of model peptides. Using a direct binding assay of biotinylated peptides on whole cells expressing the desired alleles, we report several peptides that bind differentially to the allele pairs depending on the presence or absence of Asp at position 57. Peptides with negatively charged residues at anchor position 9 bind well to alleles not containing Asp at position 57 in the beta chain but cannot bind well to homologous Asp-positive alleles. By changing the peptides at the single residue predicted to interact with this position 57, we demonstrate a drastically altered or reversed pattern of binding. Ala analog peptides confirm these interactions and identify a limited set of interaction sites between the bound peptides and the class II molecules. Clarification of the impact of specific class II polymorphisms on generating unique allele-specific peptide binding "repertoires" will aid in our understanding of the development of specific immune responses and HLA-associated diseases.
Resumo:
Recognition of peptides bound to class I major histocompatibility complex (MHC) molecules by specific receptors on T cells regulates the development and activity of the cellular immune system. We have designed and synthesized de novo cyclic peptides that incorporate PEG in the ring structure for binding to class I MHC molecules. The large PEG loops are positioned to extend out of the peptide binding site, thus creating steric effects aimed at preventing the recognition of class I MHC complexes by T-cell receptors. Peptides were synthesized and cyclized on polymer support using high molecular weight symmetrical PEG dicarboxylic acids to link the side chains of lysine residues substituted at positions 4 and 8 in the sequence of the HLA-A2-restricted human T-lymphotrophic virus type I Tax peptide. Cyclic peptides promoted the in vitro folding and assembly of HLA-A2 complexes. Thermal denaturation studies using circular dichroism spectroscopy showed that these complexes are as stable as complexes formed with antigenic peptides.
Resumo:
Transmission of human immunodeficiency virus 1 (HIV-1) from an infected women to her offspring during gestation and delivery was found to be influenced by the infant's major histocompatibility complex class II DRB1 alleles. Forty-six HIV-infected infants and 63 seroreverting infants, born with passively acquired anti-HIV antibodies but not becoming detectably infected, were typed by an automated nucleotide-sequence-based technique that uses low-resolution PCR to select either the simpler Taq or the more demanding T7 sequencing chemistry. One or more DR13 alleles, including DRB1*1301, 1302, and 1303, were found in 31.7% of seroreverting infants and 15.2% of those becoming HIV-infected [OR (odds ratio) = 2.6 (95% confidence interval 1.0-6.8); P = 0.048]. This association was influenced by ethnicity, being seen more strongly among the 80 Black and Hispanic children [OR = 4.3 (1.2-16.4); P = 0.023], with the most pronounced effect among Black infants where 7 of 24 seroreverters inherited these alleles with none among 12 HIV-infected infants (Haldane OR = 12.3; P = 0.037). The previously recognized association of DR13 alleles with some situations of long-term nonprogression of HIV suggests that similar mechanisms may regulate both the occurrence of infection and disease progression after infection. Upon examining for residual associations, only only the DR2 allele DRB1*1501 was associated with seroreversion in Caucasoid infants (OR = 24; P = 0.004). Among Caucasoids the DRB1*03011 allele was positively associated with the occurrence of HIV infection (P = 0.03).
Resumo:
Considering the well established role of nonclassical HLA-G class I molecules in inhibiting natural killer (NK) cell function, the consequence of abnormal HLA-G expression in malignant cells should be the escape of tumors from immunosurveillance. To examine this hypothesis, we analyzed HLA-G expression and NK sensitivity in human malignant melanoma cells. Our analysis of three melanoma cell lines and ex vivo biopsy demonstrated that (i) IGR and M74 human melanoma cell lines exhibit a high level of HLA-G transcription with differential HLA-G isoform transcription and protein expression patterns, (ii) a higher level of HLA-G transcription ex vivo is detected in a skin melanoma metastasis biopsy compared with a healthy skin fragment from the same individual, and (iii) HLA-G protein isoforms other than membrane-bound HLA-G1 protect IGR from NK lysis. It thus appears of critical importance to consider the specific role of HLA-G expression in tumors in the design of future cancer immunotherapies.
Resumo:
Rheumatoid arthritis (RA) is an autoimmune disease associated with the HLA-DR4 and DR1 alleles. The target autoantigen(s) in RA is unknown, but type II collagen (CII) is a candidate, and the DR4- and DR1-restricted immunodominant T cell epitope in this protein corresponds to amino acids 261–273 (CII 261–273). We have defined MHC and T cell receptor contacts in CII 261–273 and provide strong evidence that this peptide corresponds to the peptide binding specificity previously found for RA-associated DR molecules. Moreover, we demonstrate that HLA-DR4 and human CD4 transgenic mice homozygous for the I-Abβ0 mutation are highly susceptible to collagen-induced arthritis and describe the clinical course and histopathological changes in the affected joints.
Resumo:
Major histocompatibility complex (MHC) class II molecules displayed clustered patterns at the surfaces of T (HUT-102B2) and B (JY) lymphoma cells characterized by interreceptor distances in the micrometer range as detected by scanning force microscopy of immunogold-labeled antigens. Electron microscopy revealed that a fraction of the MHC class II molecules was also heteroclustered with MHC class I antigens at the same hierarchical level as described by the scanning force microscopy data, after specifically and sequentially labeling the antigens with 30- and 15-nm immunogold beads. On JY cells the estimated fraction of co-clustered HLA II was 0.61, whereas that of the HLA I was 0.24. Clusterization of the antigens was detected by the deviation of their spatial distribution from the Poissonian distribution representing the random case. Fluorescence resonance energy transfer measurements also confirmed partial co-clustering of the HLA class I and II molecules at another hierarchical level characterized by the 2- to 10-nm Förster distance range and providing fine details of the molecular organization of receptors. The larger-scale topological organization of the MHC class I and II antigens may reflect underlying membrane lipid domains and may fulfill significant functions in cell-to-cell contacts and signal transduction.
Resumo:
Analysis of perforin-deficient mice has identified the cytolytic pathway and perforin as the preeminent effector molecule in T cell-mediated control of virus infections. In this paper, we show that mice lacking both granzyme A (gzmA) and granzyme B (gzmB), which are, beside perforin, key constituents of cytolytic vesicles, are as incapable as are perforin-deficient mice of controlling primary infections by the natural mouse pathogen ectromelia, a poxvirus. Death of gzmA×gzmB double knockout mice occurred in a dose-dependent manner, despite the expression of functionally active perforin and the absence of an intrinsic defect to generate splenic cytolytic T cells. These results establish that both gzmA and gzmB are indispensable effector molecules acting in concert with perforin in granule exocytosis-mediated host defense against natural viral pathogens.
Resumo:
Antigenic peptide loading of major histocompatibility complex class II molecules is enhanced by lysosomal pH and catalyzed by the HLA-DM molecule. The physical mechanism behind the catalytic activity of DM was investigated by using time-resolved fluorescence anisotropy (TRFA) and fluorescence binding studies with the dye 8-anilino-1-naphthalenesulfonic acid (ANS). We demonstrate that the conformations of both HLA-DM and HLA-DR3, irrespective of the composition of bound peptide, are pH sensitive. Both complexes reversibly expose more nonpolar regions upon protonation. Interaction of DM with DR shields these hydrophobic domains from the aqueous environment, leading to stabilization of the DM and DR conformations. At lysosomal pH, the uncovering of additional hydrophobic patches leads to a more extensive DM–DR association. We propose that DM catalyzes class II peptide loading by stabilizing the low-pH conformation of DR, favoring peptide exchange. The DM–DR association involves a larger hydrophobic surface area with DR/class II-associated invariant chain peptides (CLIP) than with stable DR/peptide complexes, explaining the preferred association of DM with the former. The data support a release mechanism of DM from the DM–DR complex through reduction of the interactive surface, upon binding of class II molecules with antigenic peptide or upon neutralization of the DM–DR complex at the cell surface.
Resumo:
Natural killer (NK) cell cytotoxicity is regulated in large part by the expression of NK cell receptors able to bind class I major histocompatibility complex glycoproteins. The receptors associated with recognition of HLA-C allospecificities are the two-domain Ig-like molecules, p50 and p58 proteins, with highly homologous extracellular domains but differing in that they have either an activating or inhibitory function, respectively, depending on the transmembrane domain and cytoplasmic tails that they possess. We have compared the binding to HLA-Cw7 of an inhibitory p58 molecule, NKAT2, the highly homologous activating p50 molecule, clone 49, and a second activating p50 molecule, clone 39, which has homologies to both NKAT1 and NKAT2. NKAT2 binds to HLA-Cw7 with very rapid association and dissociation rates. However, the p50 receptors bind only very weakly, if at all, to HLA-C. The molecular basis of this difference is analyzed, and the functional significance of these observations is discussed.
Resumo:
Abnormal expression of major histocompatibility complex (MHC) class I and class II in various tissues is associated with autoimmune disease. Autoimmune responses can be triggered by viral infections or tissue injuries. We show that the ability of a virus or a tissue injury to increase MHC gene expression is duplicated by any fragment of double-stranded (ds) DNA or dsRNA introduced into the cytoplasm of nonimmune cells. Activation is sequence-independent, is induced by ds polynucleotides as small as 25 bp in length, and is not duplicated by single-stranded polynucleotides. In addition to causing abnormal MHC expression, the ds nucleic acids increase the expression of genes necessary for antigen processing and presentation: proteasome proteins (e.g., LMP2), transporters of antigen peptides; invariant chain, HLA-DM, and the costimulatory molecule B7.1. The mechanism is different from and additive to that of γ-interferon (γIFN), i.e., ds polynucleotides increase class I much more than class II, whereas γIFN increases class II more than class I. The ds nucleic acids also induce or activate Stat1, Stat3, mitogen-activated protein kinase, NF-κB, the class II transactivator, RFX5, and the IFN regulatory factor 1 differently from γIFN. CpG residues are not responsible for this effect, and the action of the ds polynucleotides could be shown in a variety of cell types in addition to thyrocytes. We suggest that this phenomenon is a plausible mechanism that might explain how viral infection of tissues or tissue injury triggers autoimmune disease; it is potentially relevant to host immune responses induced during gene therapy.
Resumo:
Langerhans cells are a subset of dendritic cells (DCs) found in the human epidermis with unique morphological and molecular properties that enable their function as “sentinels” of the immune system. DCs are pivotal in the initiation and regulation of primary MHC class I restricted T lymphocyte immune responses and are able to present both endogenous and exogenous antigen onto class I molecules. Here, we study the MHC class I presentation pathway following activation of immature, CD34-derived human Langerhans cells by lipopolysaccharide (LPS). LPS induces an increase in all components of the MHC class I pathway including the transporter for antigen presentation (TAP), tapasin and ERp57, and the immunoproteasome subunits LMP2 and LMP7. Moreover, in CD34-derived Langerhans cells, the rapid increase in expression of MHC class I molecules seen at the cell surface following LPS activation is because of mobilization of MHC class I molecules from HLA-DM positive endosomal compartments, a pathway not seen in monocyte-derived DCs. Mobilization of class I from this compartment is primaquine sensitive and brefeldin A insensitive. These data demonstrate the regulation of the class I pathway in concert with the maturation of the CD34-derived Langerhans cells and suggest potential sites for antigen loading of class I proteins.
Resumo:
Many persistent viruses have evolved the ability to subvert MHC class I antigen presentation. Indeed, human cytomegalovirus (HCMV) encodes at least four proteins that down-regulate cell-surface expression of class I. The HCMV unique short (US)2 glycoprotein binds newly synthesized class I molecules within the endoplasmic reticulum (ER) and subsequently targets them for proteasomal degradation. We report the crystal structure of US2 bound to the HLA-A2/Tax peptide complex. US2 associates with HLA-A2 at the junction of the peptide-binding region and the α3 domain, a novel binding surface on class I that allows US2 to bind independently of peptide sequence. Mutation of class I heavy chains confirms the importance of this binding site in vivo. Available data on class I-ER chaperone interactions indicate that chaperones would not impede US2 binding. Unexpectedly, the US2 ER-luminal domain forms an Ig-like fold. A US2 structure-based sequence alignment reveals that seven HCMV proteins, at least three of which function in immune evasion, share the same fold as US2. The structure allows design of further experiments to determine how US2 targets class I molecules for degradation.
Resumo:
A small percentage of human T lymphocytes, predominantly CD8+ T cells, express receptors for HLA class 1 molecules of natural killer type (NK-R) that are inhibitory for T-cell antigen receptor (TCR)-mediated functions. In the present study, it is demonstrated that the various NK-R molecules typically expressed by NK cells are also expressed on periheral blood T lymphocytes. These CD3+ NK-R+ cells have a cell surface phenotype typical of memory cells as indicated by the expression of CD45RO and CD29 and by the lack of CD28 and CD45RA. Furthermore, by the combined use of anti-TCR V beta-specific antibodies and a semiquantitative polymerase chain reaction assay, the TCR repertoire in this CD3+ NK-R+ cell subset was found to be skewed; in fact, one or two V beta families were largely represented, and most of the other V beta s were barely detected. In addition, analysis of recombinant clones of the largely represented V beta families demonstrated that these V beta s were oligoclonally or monoclonally expanded.