18 resultados para Galactic fountain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Very-long-baseline radio interferometry images of the nuclear region of the nearby spiral galaxy M81 reveal the most compact galactic core outside the Galaxy of which the size has been determined: 700 x 300 astronomical units (AU). The observations exclude a starburst or supernova interpretation for the core. Instead they favor an active galactic nucleus. There is evidence for a northeastern jet bent by approximately 35 degrees over a length scale from 700 to 4000 AU. The jet is, on average, directed toward an extended emission region, probably a radio lobe, about 1 kiloparsec (kpc) away from the core. A corresponding emission region was found in the southwest at a distance of only 30 pc from the core. The observed jet is extremely stable and likely to be associated with a steady-state channel. There is no detectable motion along the jet beyond the nominal value of -60 +/- 60 km.s-1. The level of activities in the core region of M81 is intermediate between that of SgrA* and that of powerful radio galaxies and quasars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I investigate the issue of whether the various subclasses of radio-loud galaxies are intrinsically the same but have been classified differently mainly due to their being viewed from different directions. Evidence for the two key elements of this popular version of the "unified scheme (US)," relativistic jets and nuclear tori, is updated. The case for the torus opening angle increasing with the radio luminosity of the active galactic nucleus (AGN) is freshly argued. Radio-loud AGN are particularly suited for testing the US, since their structures and polarization properties on different scales, as well as their overall radio sizes, provide useful statistical indicators of the relative orientations of their various subclasses. I summarize recent attempts to bring under a single conceptual framework the USs developed for radio-moderate [Fanaroff-Riley type I (FRI)] and radio-powerful (FRII) AGN. By focusing on FRII radio sources, I critically examine the recent claims of conflict with the US, based on the statistics of radio-size measurements for large, presumably orientation-independent, samples with essentially complete optical identifications. Possible ways of reconciling these results, and also the ones based on very-long-baseline radio interferometry polarimetric observations, with the US are pointed out. By incorporating a highly plausible temporal evolution of radio source properties into the US, I outline a scenario that allows the median linear size of quasars to approach, or even exceed, that of radio galaxies, as samples with decreasing radio luminosity are observed. Thus, even though a number of issues remain to be fully resolved, the scope of unified models continues to expand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I will discuss several issues related to the acceleration, collimation, and propagation of jets from active galactic nuclei. Hydromagnetic stresses provide the best bet for both accelerating relativistic flows and providing a certain amount of initial collimation. However, there are limits to how much "self-collimation" can be achieved without the help of an external pressurized medium. Moreover, existing models, which postulate highly organized poloidal flux near the base of the flow, are probably unrealistic. Instead, a large fraction of the magnetic energy may reside in highly disorganized "chaotic" fields. Such a field can also accelerate the flow to relativistic speeds, in some cases with greater efficiency than highly organized fields, but at the expense of self-collimation. The observational interpretation of jet physics is still hampered by a dearth of unambiguous diagnostics. Propagating disturbances in flows, such as the oblique shocks that may constitute the kiloparsec-scale "knots" in the M87 jet, may provide a wide range of untapped diagnostics for jet properties.