196 resultados para G protein coupled receptors (GPCR)
Resumo:
Cell cycle progression is monitored by highly coordinated checkpoint machinery, which is activated to induce cell cycle arrest until defects like DNA damage are corrected. We have isolated an anti-proliferative cell cycle regulator named G2A (for G2 accumulation), which is predominantly expressed in immature T and B lymphocyte progenitors and is a member of the seven membrane-spanning G protein-coupled receptor family. G2A overexpression attenuates the transformation potential of BCR-ABL and other oncogenes, and leads to accumulation of cells at G2/M independently of p53 and c-Abl. G2A can be induced in lymphocytes and to a lesser extent in nonlymphocyte cell lines or tissues by multiple stimuli including different classes of DNA-damaging agents and serves as a response to damage and cellular stimulation which functions to slow cell cycle progression.
Resumo:
The M78 protein of murine cytomegalovirus exhibits sequence features of a G protein-coupled receptor. It is synthesized with early kinetics, it becomes partially colocalized with Golgi markers, and it is incorporated into viral particles. We have constructed a viral substitution mutant, SMsubM78, which lacks most of the M78 ORF. The mutant produces a reduced yield in cultured 10.1 fibroblast and IC21 macrophage cell lines. The defect is multiplicity dependent and greater in the macrophage cell line. Consistent with its growth defect in cultured cells, the mutant exhibits reduced pathogenicity in mice, generating less infectious progeny than wild-type virus in all organs assayed. SMsubM78 fails to efficiently activate accumulation of the viral m123 immediate-early mRNA in infected macrophages. M78 facilitates the accumulation of the immediate-early mRNA in cycloheximide-treated cells, arguing that it acts in the absence of de novo protein synthesis. We conclude that the M78 G protein-coupled receptor homologue is delivered to cells as a constituent of the virion, and it acts to facilitate the accumulation of immediate-early mRNA.
Resumo:
We have identified another Drosophila GTP-binding protein (G protein) alpha subunit, dGq alpha-3. Transcripts encoding dGq alpha-3 are derived from alternative splicing of the dGq alpha locus previously shown to encode two visual-system-specific transcripts [Lee, Y.-J., Dobbs, M.B., Verardi, M.L. & Hyde, D.R. (1990) Neuron 5, 889-898]. Immunolocalization studies using dGq alpha-3 isoform-specific antibodies and LacZ fusion genes show that dGq alpha-3 is expressed in chemosensory cells of the olfactory and taste structures, including a subset of olfactory and gustatory neurons, and in cells of the central nervous system, including neurons in the lamina ganglionaris. These data are consistent with a variety of roles for dGq alpha-3, including mediating a subset of olfactory and gustatory responses in Drosophila, and supports the idea that some chemosensory responses use G protein-coupled receptors and the second messenger inositol 1,4,5-trisphosphate.
Resumo:
In vivo, G protein-coupled receptors (GPCR) for neurotransmitters undergo complex intracellular trafficking that contribute to regulate their abundance at the cell surface. Here, we report a previously undescribed alteration in the subcellular localization of D1 dopamine receptor (D1R) that occurs in vivo in striatal dopaminoceptive neurons in response to chronic and constitutive hyperdopaminergia. Indeed, in mice lacking the dopamine transporter, D1R is in abnormally low abundance at the plasma membrane of cell bodies and dendrites and is largely accumulated in rough endoplasmic reticulum and Golgi apparatus. Decrease of striatal extracellular dopamine concentration with 6-hydroxydopamine (6- OHDA) in heterozygous mice restores delivery of the receptor from the cytoplasm to the plasma membrane in cell bodies. These results demonstrate that, in vivo, in the central nervous system, the storage in cytoplasmic compartments involved in synthesis and the membrane delivery contribute to regulate GPCR availability and abundance at the surface of the neurons under control of the neurotransmitter tone. Such regulation may contribute to modulate receptivity of neurons to their endogenous ligands and related exogenous drugs.
Resumo:
Although neurogenesis in the embryo proceeds in a region- or lineage-specific fashion coincident with neuropeptide expression, a regulatory role for G protein-coupled receptors (GPCR) remains undefined. Pituitary adenylate cyclase activating polypeptide (PACAP) stimulates sympathetic neuroblast proliferation, whereas the peptide inhibits embryonic cortical precursor mitosis. Here, by using ectopic expression strategies, we show that the opposing mitogenic effects of PACAP are determined by expression of PACAP receptor splice isoforms and differential coupling to the phospholipase C (PLC) pathway, as opposed to differences in cellular context. In embryonic day 14 (E14) cortical precursors transfected with the hop receptor variant, but not cells transfected with the short variant, PACAP activates the PLC pathway, increasing intracellular calcium and eliciting translocation of protein kinase C. Ectopic expression of the hop variant in cortical neuroblasts transforms the antimitotic effect of PACAP into a promitogenic signal. Furthermore, PACAP promitogenic effects required PLC pathway function indicated by antagonist U-73122 studies in hop-transfected cortical cells and native sympathetic neuroblasts. These observations highlight the critical role of lineage-specific expression of GPCR variants in determining mitogenic signaling in neural precursors.
Resumo:
Heterotrimeric G proteins (peripheral proteins) conduct signals from membrane receptors (integral proteins) to regulatory proteins localized to various cellular compartments. They are in excess over any G protein-coupled receptor type on the cell membrane, which is necessary for signal amplification. These facts account for the large number of G protein molecules bound to membrane lipids. Thus, the protein-lipid interactions are crucial for their cellular localization, and consequently for signal transduction. In this work, the binding of G protein subunits to model membranes (liposomes), formed with defined membrane lipids, has been studied. It is shown that although G protein α-subunits were able to bind to lipid bilayers, the presence of nonlamellar-prone phospholipids (phosphatidylethanolamines) enhanced their binding to model membranes. This mechanism also appears to be used by other (structurally and functionally unrelated) peripheral proteins, such as protein kinase C and the insect protein apolipophorin III, indicating that it could constitute a general mode of protein-lipid interactions, relevant in the activity and translocation of some peripheral (amphitropic) proteins from soluble to particulate compartments. Other factors, such as the presence of cholesterol or the vesicle surface charge, also modulated the binding of the G protein subunits to lipid bilayers. Conversely, the binding of G protein-coupled receptor kinase 2 and the G protein β-subunit to liposomes was not increased by hexagonally prone lipids. Their distinct interactions with membrane lipids may, in part, explain the different cellular localizations of all of these proteins during the signaling process.
Resumo:
Neuronal Ca2+ channels are inhibited by a variety of transmitter receptors coupled to Go-type GTP-binding proteins. Go has been postulated to work via a direct interaction between an activated G protein subunit and the Ca2+ channel complex. Here we show that the inhibition of sensory neuron N-type Ca2+ channels produced by γ-aminobutyric acid involves a novel, rapidly activating tyrosine kinase signaling pathway that is mediated by Gαo and a src-like kinase. In contrast to other recently described G protein-coupled tyrosine kinase pathways, the Gαo-mediated modulation requires neither protein kinase C nor intracellular Ca2+. The results suggest that this pathway mediates rapid receptor-G protein signaling in the nervous system and support the existence of a previously unrecognized form of crosstalk between G protein and tyrosine kinase pathways.
Resumo:
We reported previously that Go-deficient mice develop severe neurological defects that include hyperalgesia, a generalized tremor, lack of coordination, and a turning syndrome somewhat reminiscent of unilateral lesions of the dopaminergic nigro-striatal pathway. By using frozen coronal sections of serially sectioned brains of normal and Go-deficient mice, we studied the ability of several G protein coupled receptors to promote binding of GTPγS to G proteins and the ability of GTP to promote a shift in the affinity of D2 dopamine receptor for its physiologic agonist dopamine. We found a generalized, but not abolished reduction in agonist-stimulated binding of GTPγS to frozen brain sections, with no significant left–right differences. Unexpectedly, the ability of GTP to regulate the binding affinity of dopamine to D2 receptors (as seen in in situ [35S]sulpiride displacement curves) that was robust in control mice, was absent in Go-deficient mice. The data suggest that most of the effects of the Gi/Go-coupled D2 receptors in the central nervous system are mediated by Go instead of Gi1, Gi2, or Gi3. In agreement with this, the effect of GTP on dopamine binding to D2 receptors in double Gi1 plus Gi2- and Gi1 plus Gi3-deficient mice was essentially unaffected.
Resumo:
NGF initiates the majority of its neurotrophic effects by promoting the activation of the tyrosine kinase receptor TrkA. Here we describe a novel interaction between TrkA and GIPC, a PDZ domain protein. GIPC binds to the juxtamembrane region of TrkA through its PDZ domain. The PDZ domain of GIPC also interacts with GAIP, an RGS (regulators of G protein signaling) protein. GIPC and GAIP are components of a G protein-coupled signaling complex thought to be involved in vesicular trafficking. In transfected HEK 293T cells GIPC, GAIP, and TrkA form a coprecipitable protein complex. Both TrkA and GAIP bind to the PDZ domain of GIPC, but their binding sites within the PDZ domain are different. The association of endogenous GIPC with the TrkA receptor was confirmed by coimmunoprecipitation in PC12 (615) cells stably expressing TrkA. By immunofluorescence GIPC colocalizes with phosphorylated TrkA receptors in retrograde transport vesicles located in the neurites and cell bodies of differentiated PC12 (615) cells. These results suggest that GIPC, like other PDZ domain proteins, serves to cluster transmembrane receptors with signaling molecules. When GIPC is overexpressed in PC12 (615) cells, NGF-induced phosphorylation of mitogen-activated protein (MAP) kinase (Erk1/2) decreases; however, there is no effect on phosphorylation of Akt, phospholipase C-γ1, or Shc. The association of TrkA receptors with GIPC and GAIP plus the inhibition of MAP kinase by GIPC suggests that GIPC may provide a link between TrkA and G protein signaling pathways.
Resumo:
N-type and P/Q-type Ca2+ channels are inhibited by neurotransmitters acting through G protein-coupled receptors in a membrane-delimited pathway involving Gβγ subunits. Inhibition is caused by a shift from an easily activated “willing” (W) state to a more-difficult-to-activate “reluctant” (R) state. This inhibition can be reversed by strong depolarization, resulting in prepulse facilitation, or by protein kinase C (PKC) phosphorylation. Comparison of regulation of N-type Ca2+ channels containing Cav2.2a α1 subunits and P/Q-type Ca2+ channels containing Cav2.1 α1 subunits revealed substantial differences. In the absence of G protein modulation, Cav2.1 channels containing Cavβ subunits were tonically in the W state, whereas Cav2.1 channels without β subunits and Cav2.2a channels with β subunits were tonically in the R state. Both Cav2.1 and Cav2.2a channels could be shifted back toward the W state by strong depolarization or PKC phosphorylation. Our results show that the R state and its modulation by prepulse facilitation, PKC phosphorylation, and Cavβ subunits are intrinsic properties of the Ca2+ channel itself in the absence of G protein modulation. A common allosteric model of G protein modulation of Ca2+-channel activity incorporating an intrinsic equilibrium between the W and R states of the α1 subunits and modulation of that equilibrium by G proteins, Cavβ subunits, membrane depolarization, and phosphorylation by PKC accommodates our findings. Such regulation will modulate transmission at synapses that use N-type and P/Q-type Ca2+ channels to initiate neurotransmitter release.
Resumo:
Each G protein-coupled receptor recognizes only a distinct subset of the many structurally closely related G proteins expressed within a cell. How this selectively is achieved at a molecular level is not well understood, particularly since no specific point-to-point contact sites between a receptor and its cognate G protein(s) have been identified. In this study, we demonstrate that a 4-aa epitope on the m2 muscarinic acetylcholine receptor, a prototypical Gi/o-coupled receptor, can specifically recognize the C-terminal 5 aa of alpha subunits of the Gi/o protein family. The m2 receptor residues involved in this interaction are predicted to be located on one side of an alpha-helical receptor region present at the junction between the third intracellular loop and the sixth transmembrane domain. Coexpression studies with hybrid m2/m3 muscarinic receptors and mutant G-protein alpha q subunits showed that the receptor/G-protein contact site identified in this study is essential for coupling specificity and G-protein activation.
Resumo:
Guanine nucleotide-binding proteins (G proteins) activate K+ conductances in cardiac atrial cells to slow heart rate and in neurons to decrease excitability. cDNAs encoding three isoforms of a G-protein-coupled, inwardly rectifying K+ channel (GIRK) have recently been cloned from cardiac (GIRK1/Kir 3.1) and brain cDNA libraries (GIRK2/Kir 3.2 and GIRK3/Kir 3.3). Here we report that GIRK2 but not GIRK3 can be activated by G protein subunits G beta 1 and G gamma 2 in Xenopus oocytes. Furthermore, when either GIRK3 or GIRK2 was coexpressed with GIRK1 and activated either by muscarinic receptors or by G beta gamma subunits, G-protein-mediated inward currents were increased by 5- to 40-fold. The single-channel conductance for GIRK1 plus GIRK2 coexpression was intermediate between those for GIRK1 alone and for GIRK2 alone, and voltage-jump kinetics for the coexpressed channels displayed new kinetic properties. On the other hand, coexpression of GIRK3 with GIRK2 suppressed the GIRK2 alone response. These studies suggest that formation of heteromultimers involving the several GIRKs is an important mechanism for generating diversity in expression level and function of neurotransmitter-coupled, inward rectifier K+ channels.
Resumo:
βarrestins mediate the desensitization of the β2-adrenergic receptor (β2AR) and many other G protein-coupled receptors (GPCRs). Additionally, βarrestins initiate the endocytosis of these receptors via clathrin coated-pits and interact directly with clathrin. Consequently, it has been proposed that βarrestins serve as clathrin adaptors for the GPCR family by linking these receptors to clathrin lattices. AP-2, the heterotetrameric clathrin adaptor protein, has been demonstrated to mediate the internalization of many types of plasma membrane proteins other than GPCRs. AP-2 interacts with the clathrin heavy chain and cytoplasmic domains of receptors such as those for epidermal growth factor and transferrin. In the present study we demonstrate the formation of an agonist-induced multimeric complex containing a GPCR, βarrestin 2, and the β2-adaptin subunit of AP-2. β2-Adaptin binds βarrestin 2 in a yeast two-hybrid assay and coimmunoprecipitates with βarrestins and β2AR in an agonist-dependent manner in HEK-293 cells. Moreover, β2-adaptin translocates from the cytosol to the plasma membrane in response to the β2AR agonist isoproterenol and colocalizes with β2AR in clathrin-coated pits. Finally, expression of βarrestin 2 minigene constructs containing the β2-adaptin interacting region inhibits β2AR endocytosis. These findings point to a role for AP-2 in GPCR endocytosis, and they suggest that AP-2 functions as a clathrin adaptor for the endocytosis of diverse classes of membrane receptors.
Resumo:
Restenosis continues to be a major problem limiting the effectiveness of revascularization procedures. To date, the roles of heterotrimeric G proteins in the triggering of pathological vascular smooth muscle (VSM) cell proliferation have not been elucidated. βγ subunits of heterotrimeric G proteins (Gβγ) are known to activate mitogen-activated protein (MAP) kinases after stimulation of certain G protein-coupled receptors; however, their relevance in VSM mitogenesis in vitro or in vivo is not known. Using adenoviral-mediated transfer of a transgene encoding a peptide inhibitor of Gβγ signaling (βARKct), we evaluated the role of Gβγ in MAP kinase activation and proliferation in response to several mitogens, including serum, in cultured rat VSM cells. Our results include the striking finding that serum-induced proliferation of VSM cells in vitro is mediated largely via Gβγ. Furthermore, we studied the effects of in vivo adenoviral-mediated βARKct gene transfer on VSM intimal hyperplasia in a rat carotid artery restenosis model. Our in vivo results demonstrated that the presence of the βARKct in injured rat carotid arteries significantly reduced VSM intimal hyperplasia by 70%. Thus, Gβγ plays a critical role in physiological VSM proliferation, and targeted Gβγ inhibition represents a novel approach for the treatment of pathological conditions such as restenosis.
RGS proteins reconstitute the rapid gating kinetics of Gβγ-activated inwardly rectifying K+ channels
Resumo:
G protein-gated inward rectifier K+ (GIRK) channels mediate hyperpolarizing postsynaptic potentials in the nervous system and in the heart during activation of Gα(i/o)-coupled receptors. In neurons and cardiac atrial cells the time course for receptor-mediated GIRK current deactivation is 20–40 times faster than that observed in heterologous systems expressing cloned receptors and GIRK channels, suggesting that an additional component(s) is required to confer the rapid kinetic properties of the native transduction pathway. We report here that heterologous expression of “regulators of G protein signaling” (RGS proteins), along with cloned G protein-coupled receptors and GIRK channels, reconstitutes the temporal properties of the native receptor → GIRK signal transduction pathway. GIRK current waveforms evoked by agonist activation of muscarinic m2 receptors or serotonin 1A receptors were dramatically accelerated by coexpression of either RGS1, RGS3, or RGS4, but not RGS2. For the brain-expressed RGS4 isoform, neither the current amplitude nor the steady-state agonist dose-response relationship was significantly affected by RGS expression, although the agonist-independent “basal” GIRK current was suppressed by ≈40%. Because GIRK activation and deactivation kinetics are the limiting rates for the onset and termination of “slow” postsynaptic inhibitory currents in neurons and atrial cells, RGS proteins may play crucial roles in the timing of information transfer within the brain and to peripheral tissues.