18 resultados para Forced oscillations
Resumo:
Glutathione S-transferases (EC 2.5.1.18) in mammalian cells catalyze the conjugation, and thus, the detoxication of a structurally diverse group of electrophilic environmental carcinogens and alkylating drugs, including the antineoplastic nitrogen mustards. We proposed that structural alteration of the nonspecific electrophile-binding site would produce mutant enzymes with increased efficiency for detoxication of a single drug and that these mutants could serve as useful somatic transgenes to protect healthy human cells against single alkylating agents used in cancer chemotherapy protocols. Random mutagenesis of three regions (residues 9-14, 102-112, and 210-220), which together compose the glutathione S-transferase electrophile-binding site, followed by selection of Escherichia coli expressing the enzyme library with the nitrogen mustard mechlorethamine (20-500 microM), yielded mutant enzymes that showed significant improvement in catalytic efficiency for mechlorethamine conjugation (up to 15-fold increase in kcat and up to 6-fold increase in kcat/Km) and that confer up to 31-fold resistance, which is 9-fold greater drug resistance than that conferred by the wild-type enzyme. The results suggest a general strategy for modification of drug- and carcinogen-metabolizing enzymes to achieve desired resistance in both prokaryotic and eukaryotic plant and animal cells.
Resumo:
A number of excitable cell types respond to a constant hormonal stimulus with a periodic oscillation in intracellular calcium. The frequency of oscillation is often proportional to the hormonal stimulus, and one says that the stimulus is frequency encoded. Here we develop a theory of frequency encoding in excitable systems and apply it to intracellular calcium oscillations that results from increases in the intracellular level of inositol 1,4,5-triphosphate.
Resumo:
The rhythmogenesis of 10-Hz sleep spindles is studied in a large-scale thalamic network model with two cell populations: the excitatory thalamocortical (TC) relay neurons and the inhibitory nucleus reticularis thalami (RE) neurons. Spindle-like bursting oscillations emerge naturally from reciprocal interactions between TC and RE neurons. We find that the network oscillations can be synchronized coherently, even though the RE-TC connections are random and sparse, and even though individual neurons fire rebound bursts intermittently in time. When the fast gamma-aminobutyrate type A synaptic inhibition is blocked, synchronous slow oscillations resembling absence seizures are observed. Near-maximal network synchrony is established with even modest convergence in the RE-to-TC projection (as few as 5-10 RE inputs per TC cell suffice). The hyperpolarization-activated cation current (Ih) is found to provide a cellular basis for the intermittency of rebound bursting that is commonly observed in TC neurons during spindles. Such synchronous oscillations with intermittency can be maintained only with a significant degree of convergence for the TC-to-RE projection.