19 resultados para Follicular atresia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A main function attributed to the BCL2 protein is its ability to confer resistance against apoptosis. In addition to the constitutively high expression of BCL2, caused by gene rearrangement in follicular lymphomas, elevated expression of the BCL2 gene has been found in differentiating hematopoietic, neural, and epithelial tissues. To address the question of whether the expression of BCL2 is a cause or consequence of cell differentiation, we used a human neural-crest-derived tumor cell line, Paju, that undergoes spontaneous neural differentiation in vitro. The Paju cell line displays moderate expression of BCL2, the level of which increases in parallel with further neural differentiation induced by treatment with phorbol 12-myristate 13-acetate. Transfection of normal human BCL2 cDNA in sense and antisense orientations had a dramatic impact on the differentiation of the Paju cells. Overexpression of BCL2 cDNA induced extensive neurite outgrowth, even in low serum concentrations, together with an increased expression of neuron-specific enolase. Paju cells expressing the anti-sense BCL2 cDNA construct, which reduced the endogenous levels of BCL2, did not undergo spontaneous neural differentiation. These cells acquired an epithelioid morphology and up-regulated the intermediate filament protein nestin, typically present in primitive neuroectodermal cells. The manipulated levels of BCL2 did not have appreciable impact on cell survival in normal culture. Our findings demonstrate that the BCL2 gene product participates in the regulation of neural differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Progesterone receptors appear in granuloma cells of preovulatory follicles after the midcycle gonadotropin surge, suggesting important local actions of progesterone during ovulation in primates. Steroid reduction and replacement during the gonadotropin surge in macaques was used to evaluate the role of progesterone in the ovulatory process. Animals received gonadotropins to induce development of multiple preovulatory follicles, followed by human chorionic gonadotropin (hCG) administration (day 0) to promote oocyte (nuclear) maturation, ovulation, and follicular luteinization. On days 0-2, animals received no further treatment; a steroid synthesis inhibitor, trilostane (TRL); TRL + R5020; or TRL + dihydrotestosterone propionate (DHT). On day 3, ovulation was confirmed by counting ovulation sites and collecting oviductal oocytes. The meiotic status of oviductal and remaining follicular oocytes was evaluated. Peak serum estradiol levels, the total number of large follicles, and baseline serum progesterone levels at the time of hCG administration were similar in all animals. Ovulation sites and oviductal oocytes were routinely observed in controls. Ovulation was abolished in TRL. Progestin, but not androgen, replacement restored ovulation. Relative to controls, progesterone production was impaired for the first 6 days post-hCG in TRL, TRL + R5020, and TRL + DHT. Thereafter, progesterone remained low in TRL but recovered to control levels with progestin and androgen replacement. Similar percentages of mature (metaphase II) oocytes were collected among groups. Thus, steroid reduction during the gonadotropin surge inhibited ovulation and luteinization, but not reinitiation of oocyte meiotic maturation, in the primate follicle. The data are consistent with a local receptor-mediated role for progesterone in the ovulatory process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several lines of indirect evidence suggest that plasminogen activation plays a crucial role in degradation of the follicular wall during ovulation. However, single-deficient mice lacking tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA), or PA inhibitor type 1(PAI-1) gene function were recently found to have normal reproduction, although mice with a combined deficiency of tPA and uPA were significantly less fertile. To investigate whether the reduced fertility of mice lacking PA gene function is due to a reduced ovulation mechanism, we have determined the ovulation efficiency in 25-day-old mice during gonadotropin-induced ovulation. Our results reveal that ovulation efficiency is normal in mice with a single deficiency of tPA or uPA but reduced by 26% in mice lacking both physiological PAs. This result suggests that plasminogen activation plays a role in ovulatory response, although neither tPA nor uPA individually or in combination is obligatory for ovulation. The loss of an individual PA seems to be functionally complemented by the remaining PA but this compensation does not appear to involve any compensatory up-regulation. Our data imply that a functionally redundant mechanism for plasmin formation operates during gonadotropin-induced ovulation and that PAs together with other proteases generate the proteolytic activity required for follicular wall degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The BCL6 gene encodes a zinc-finger transcription factor and is altered by chromosomal arrangements in its 5' noncoding region in approximately 30% of diffuse large-cell lymphoma (DLCL). We report here that, in 22/30 (73%) DLCL and 7/15 (47%) follicular lymphoma (FL), but not in other tumor types, the BCL6 gene is also altered by multiple (1.4 x 10(-3) -1.6 x 10(-2) per bp), often biallelic, mutations clustering in its 5' noncoding region. These mutations are of somatic origin and are found in cases displaying either normal or rearranged BLC6 alleles indicating their independence from chromosomal rearrangements and linkage to immunoglobulin genes. These alterations identify a mechanism of genetic instability in malignant B cells and may have been selected during lymphomagenesis for their role in altering BCL6 expression.