19 resultados para Finch, John B.
Resumo:
The transcription factor NF-κB activates a number of genes whose protein products are proinflammatory. In quiescent cells, NF-κB exists in a latent form and is activated via a signal-dependent proteolytic mechanism in which the inhibitory protein IκB is degraded by the ubiquitin–proteasome pathway. Consequently, inhibition of the proteasome suppresses activation of NF-κB. This suppression should therefore decrease transcription of many genes encoding proinflammatory proteins and should ultimately have an anti-inflammatory effect. To this end, a series of peptide boronic acid inhibitors of the proteasome, exemplified herein by PS-341, were developed. The proteasome is the large multimeric protease that catalyzes the final proteolytic step of the ubiquitin–proteasome pathway. PS-341, a potent, competitive inhibitor of the proteasome, readily entered cells and inhibited the activation of NF-κB and the subsequent transcription of genes that are regulated by NF-κB. Significantly, PS-341 displayed similar effects in vivo. Oral administration of PS-341 had anti-inflammatory effects in a model of Streptococcal cell wall-induced polyarthritis and liver inflammation in rats. The attenuation of inflammation in this model was associated with an inhibition of IκBα degradation and NF-κB-dependent gene expression. These experiments clearly demonstrate that the ubiquitin–proteasome pathway and NF-κB play important roles in regulating chronic inflammation and that, as predicted, proteasome inhibition has an anti-inflammatory effect.
Resumo:
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of unknown cause that afflicts the central nervous system. MS is typified by a highly clonally restricted antigen-driven antibody response that is confined largely to the central nervous system. The major antigenic targets of this response and the role of antibody in disease pathogenesis remain unclear. To help resolve these issues, we cloned the IgG repertoire directly from active plaque and periplaque regions in MS brain and from B cells recovered from the cerebrospinal fluid of a patient with MS with subacute disease. We found that high-affinity anti-DNA antibodies are a major component of the intrathecal IgG response in the patients with MS that we studied. Furthermore, we show DNA-specific monoclonal antibodies rescued from two subjects with MS as well as a DNA-specific antibody rescued from an individual suffering from systemic lupus erythematosus bound efficiently to the surface of neuronal cells and oligodendrocytes. For two of these antibodies, cell-surface recognition was DNA dependent. Our findings indicate that anti-DNA antibodies may promote important neuropathologic mechanisms in chronic inflammatory disorders, such as MS and systemic lupus erythematosus.
Resumo:
Mutant sorghum (Sorghum bicolor [L.] Moench) deficient in functional phytochrome B exhibits reduced photoperiodic sensitivity and constitutively expresses a shade-avoidance phenotype. Under relatively bright, high red:far-red light, ethylene production by seedlings of wild-type and phytochrome B-mutant cultivars progresses through cycles in a circadian rhythm; however, the phytochrome B mutant produces ethylene peaks with approximately 10 times the amplitude of the wild type. Time-course northern blots show that the mutant's abundance of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase mRNA SbACO2 is cyclic and is commensurate with ethylene production, and that ACC oxidase activity follows the same pattern. Both SbACO2 abundance and ACC oxidase activity in the wild-type plant are very low under this regimen. ACC levels in the two cultivars did not demonstrate fluctuations coincident with the ethylene produced. Simulated shading caused the wild-type plant to mimic the phenotype of the mutant and to produce high amplitude rhythms of ethylene evolution. The circadian feature of the ethylene cycle is conditionally present in the mutant and absent in the wild-type plant under simulated shading. SbACO2 abundance in both cultivars demonstrates a high-amplitude diurnal cycle under these conditions; however, ACC oxidase activity, although elevated, does not exhibit a clear rhythm correlated with ethylene production. ACC levels in both cultivars show fluctuations corresponding to the ethylene rhythm previously observed. It appears that at least two separate mechanisms may be involved in generating high-amplitude ethylene rhythms in sorghum, one in response to the loss of phytochrome B function and another in response to shading.