17 resultados para Fetus.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ganglia obtained at autopsy were examined by in situ hybridization from one patient with zoster (also called herpes zoster or shingles), two varicella-zoster virus (VZV)-seropositive patients with clinical evidence of zoster, one VZV-seronegative child, and one fetus. Ganglia positive for VZV had a hybridization signal in both neuronal and nonneuronal satellite cells. Ganglia obtained from the fetus and from the seronegative infant were consistently negative for VZV. Two striking observations were evident regarding the presence of VZV DNA in ganglia obtained from the individual with zoster at the time of death. First, ganglia innervating the sites of reactivation and ganglia innervating adjacent sites yielded strongly positive signals in neurons and satellite cells, whereas ganglia from distant sites were rarely positive. Second, VZV DNA was found in both the nuclei and the cytoplasm of neurons innervating areas of zoster. However, in neurons innervating zoster-free areas, VZV DNA was found only in the nucleus of neurons and their supporting satellite cells. Immunohistochemistry with a fluorescent monoclonal antibody to the VZV glycoprotein gpI, a late virus protein, revealed a positive signal in the cytoplasm of ganglia with clinical evidence of reactivation. These results illustrate that both neuronal and satellite cells become latently infected following primary VZV infection. The presence of VZV DNA and gpI in the cytoplasm of neurons demonstrates productive infection following reactivation at the site of latency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Odortypes--namely, body odors that distinguish one individual from another on the basis of genetic polymorphism at the major histocompatibility complex and other loci--are a fundamental element in the social life and reproductive behavior of the mouse, including familial imprinting, mate choice, and control of early pregnancy. Odortypes are strongly represented in urine. During mouse pregnancy, an outcrossed mother's urine acquires fetal major histocompatibility complex odortypes of paternal origin, an observation that we took as the focus of a search for odortypes in humans, using a fully automated computer-programmed olfactometer in which trained rats are known to distinguish precisely the odortypes of another species. Five women provided urine samples before and after birth, which in each case appropriately trained rats were found to distinguish in the olfactometer. Whether this olfactory distinction of mothers' urine before and after birth reflects in part the odortype and hence genotype of the fetus, and not just the state of pregnancy per se, was tested in a second study in which each mother's postpartum urine was mixed either with urine from her own infant or with urine of a different, same-aged infant. Responses of trained rats were more positive with respect to the former (congruous) mixtures than to the latter (incongruous) mixtures, implying that, as in the mouse, human fetal odortypes of paternal genomic origin are represented in the odortype of the mother, doubtless by circulatory transfer of the pertinent odorants.