83 resultados para Factor 2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

MEF2 (myocyte-specific enhancer factor 2) is a MADS box transcription factor that is thought to be a key regulator of myogenesis in vertebrates. Mutations in the Drosophila homologue of the mef2 gene indicate that it plays a key role in regulating myogenesis in Drosophila. We show here that the Drosophila tropomyosin I (TmI) gene is a target gene for mef2 regulation. The TmI gene contains a proximal and a distal muscle enhancer within the first intron of the gene. We show that both enhancers contain a MEF2 binding site and that a mutation in the MEF2 binding site of either enhancer significantly reduces reporter gene expression in embryonic, larval, and adult somatic body wall muscles of transgenic flies. We also show that a high level of proximal enhancer-directed reporter gene expression in somatic muscles requires the cooperative activity of MEF2 and a cis-acting muscle activator region located within the enhancer. Thus, mef2 null mutant embryos show a significant reduction but not an elimination of TmI expression in the body wall myoblasts and muscle fibers that are present. Surprisingly, there is little effect in these mutants on TmI expression in developing visceral muscles and dorsal vessel (heart), despite the fact that MEF2 is expressed in these muscles in wild-type embryos, indicating that TmI expression is regulated differently in these muscles. Taken together, our results show that mef2 is a positive regulator of tropomyosin gene transcription that is necessary but not sufficient for high level expression in somatic muscle of the embryo, larva, and adult.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fibroblast growth factor-2 (FGF-2) immobilized on non-tissue culture plastic promotes adhesion and spreading of bovine and human endothelial cells that are inhibited by anti-FGF-2 antibody. Heat-inactivated FGF-2 retains its cell-adhesive activity despite its incapacity to bind to tyrosine-kinase FGF receptors or to cell-surface heparan sulfate proteoglycans. Recombinant glutathione-S-transferase-FGF-2 chimeras and synthetic FGF-2 fragments identify two cell-adhesive domains in FGF-2 corresponding to amino acid sequences 38–61 and 82–101. Both regions are distinct from the FGF-receptor-binding domain of FGF-2 and contain a DGR sequence that is the inverse of the RGD cell-recognition sequence. Calcium deprivation, RGD-containing eptapeptides, soluble vitronectin (VN), but not fibronectin (FN), inhibit cell adhesion to FGF-2. Conversely, soluble FGF-2 prevents cell adhesion to VN but not FN, thus implicating VN receptor in the cell-adhesive activity of FGF-2. Accordingly, monoclonal and polyclonal anti-αvβ3 antibodies prevent cell adhesion to FGF-2. Also, purified human αvβ3 binds to immobilized FGF-2 in a cation-dependent manner, and this interaction is competed by soluble VN but not by soluble FN. Finally, anti-αvβ3 monoclonal and polyclonal antibodies specifically inhibit mitogenesis and urokinase-type plasminogen activator (uPA) up-regulation induced by free FGF-2 in endothelial cells adherent to tissue culture plastic. These data demonstrate that FGF-2 interacts with αvβ3 integrin and that this interaction mediates the capacity of the angiogenic growth factor to induce cell adhesion, mitogenesis, and uPA up-regulation in endothelial cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Apert syndrome (AS) is characterized by craniosynostosis (premature fusion of cranial sutures) and severe syndactyly of the hands and feet. Two activating mutations, Ser-252 → Trp and Pro-253 → Arg, in fibroblast growth factor receptor 2 (FGFR2) account for nearly all known cases of AS. To elucidate the mechanism by which these substitutions cause AS, we determined the crystal structures of these two FGFR2 mutants in complex with fibroblast growth factor 2 (FGF2) . These structures demonstrate that both mutations introduce additional interactions between FGFR2 and FGF2, thereby augmenting FGFR2–FGF2 affinity. Moreover, based on these structures and sequence alignment of the FGF family, we propose that the Pro-253 → Arg mutation will indiscriminately increase the affinity of FGFR2 toward any FGF. In contrast, the Ser-252 → Trp mutation will selectively enhance the affinity of FGFR2 toward a limited subset of FGFs. These predictions are consistent with previous biochemical data describing the effects of AS mutations on FGF binding. Alterations in FGFR2 ligand affinity and specificity may allow inappropriate autocrine or paracrine activation of FGFR2. Furthermore, the distinct gain-of-function interactions observed in each crystal structure provide a model to explain the phenotypic variability among AS patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Growth factors can influence lineage determination of neural crest stem cells (NCSCs) in an instructive manner, in vitro. Because NCSCs are likely exposed to multiple signals in vivo, these findings raise the question of how stem cells would integrate such combined influences. Bone morphogenetic protein 2 (BMP2) promotes neuronal differentiation and glial growth factor 2 (GGF2) promotes glial differentiation; if NCSCs are exposed to saturating concentrations of both factors, BMP2 appears dominant. By contrast, if the cells are exposed to saturating concentrations of both BMP2 and transforming growth factor β1 (which promotes smooth muscle differentiation), the two factors appear codominant. Sequential addition experiments indicate that NCSCs require 48–96 hrs in GGF2 before they commit to a glial fate, whereas the cells commit to a smooth muscle fate within 24 hr in transforming growth factor β1. The delayed response to GGF2 does not reflect a lack of functional receptors; however, because the growth factor induces rapid mitogen-activated protein kinase phosphorylation in naive cells. Furthermore, GGF2 can attenuate induction of the neurogenic transcription factor mammalian achaete-scute homolog 1, by low doses of BMP2. This short-term antineurogenic influence of GGF2 is not sufficient for glial lineage commitment, however. These data imply that NCSCs exhibit cell-intrinsic biases in the timing and relative dosage sensitivity of their responses to instructive factors that influence the outcome of lineage decisions in the presence of multiple factors. The relative delay in glial lineage commitment, moreover, apparently reflects successive short-term and longer-term actions of GGF2. Such a delay may help to explain why glia normally differentiate after neurons, in vivo.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) is a homodimeric member of the cystine knot family of growth factors, with limited sequence homology to platelet-derived growth factor (PDGF) and transforming growth factor β2 (TGF-β). We have determined its crystal structure at a resolution of 2.5 Å, and identified its kinase domain receptor (KDR) binding site using mutational analysis. Overall, the VEGF monomer resembles that of PDGF, but its N-terminal segment is helical rather than extended. The dimerization mode of VEGF is similar to that of PDGF and very different from that of TGF-β. Mutational analysis of VEGF reveals that symmetrical binding sites for KDR are located at each pole of the VEGF homodimer. Each site contains two functional “hot spots” composed of binding determinants presented across the subunit interface. The two most important determinants are located within the largest hot spot on a short, three-stranded sheet that is conserved in PDGF and TGF-β. Functional analysis of the binding epitopes for two receptor-blocking antibodies reveal different binding determinants near each of the KDR binding hot spots.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Growth of mouse neural crest cultures in the presence of glial cell line-derived neurotrophic factor (GDNF) resulted in a dramatic dose-dependent increase in the number of tyrosine hydroxylase (TH)-positive cells that developed when 5% chicken embryo extract was present in the medium. In contrast, growth in the presence of bone morphogenetic protein (BMP)-2, BMP-4, BMP-6, transforming growth factor (TGF) β1, TGF-β2, and TGF-β3 elicited no increase in the number of TH-positive cells. The TH-positive cells that developed in the presence of GDNF had neuronal morphology and contained the middle and low molecular weight neurofilament proteins. Numerous TH-negative cells with the morphology of neurons also were observed in GDNF-treated cultures. Analysis revealed that the period from 6 to 12 days in vitro was the critical time for exposure to GDNF to generate the increase in TH-positive cell number. The growth factors neurotrophin-3 and fibroblast growth factor-2 elicited increases in the number of TH-positive cells similar to that seen in response to GDNF. In contrast, nerve growth factor was unable to substitute for GDNF. These findings extend the previously reported biological activities of GDNF by showing that it can act on mouse neural crest cultures to promote the development of neurons.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) is a hypoxia-inducible angiogenic peptide with recently identified neurotrophic effects. Because some neurotrophic factors can protect neurons from hypoxic or ischemic injury, we investigated the possibility that VEGF has similar neuroprotective properties. In HN33, an immortalized hippocampal neuronal cell line, VEGF reduced cell death associated with an in vitro model of cerebral ischemia: at a maximally effective concentration of 50 ng/ml, VEGF approximately doubled the number of cells surviving after 24 h of hypoxia and glucose deprivation. To investigate the mechanism of neuroprotection by VEGF, the expression of known target receptors for VEGF was measured by Western blotting, which showed that HN33 cells expressed VEGFR-2 receptors and neuropilin-1, but not VEGFR-1 receptors. The neuropilin-1 ligand placenta growth factor-2 failed to reproduce the protective effect of VEGF, pointing to VEGFR-2 as the site of VEGF's neuroprotective action. Two phosphatidylinositol 3′-kinase inhibitors, wortmannin and LY294002, reversed the neuroprotective effect of VEGF, implicating the phosphatidylinositol 3′-kinase/Akt signal transduction system in VEGF-mediated neuroprotection. VEGF also protected primary cultures of rat cerebral cortical neurons from hypoxia and glucose deprivation. We conclude that in addition to its known role as an angiogenic factor, VEGF may exert a direct neuroprotective effect in hypoxic-ischemic injury.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fibroblast growth factor-2 (FGF-2) promotes proliferation of neuroprogenitor cells in culture and is up-regulated within brain after injury. Using mice genetically deficient in FGF-2 (FGF-2−/− mice), we addressed the importance of endogenously generated FGF-2 on neurogenesis within the hippocampus, a structure involved in spatial, declarative, and contextual memory, after seizures or ischemic injury. BrdUrd incorporation was used to mark dividing neuroprogenitor cells and NeuN expression to monitor their differentiation into neurons. In the wild-type strain, hippocampal FGF-2 increased after either kainic acid injection or middle cerebral artery occlusion, and the numbers of BrdUrd/NeuN-positive cells significantly increased on days 9 and 16 as compared with the controls. In FGF-2−/− mice, BrdUrd labeling was attenuated after kainic acid or middle cerebral artery occlusion, as was the number of neural cells colabeled with both BrdUrd and NeuN. After FGF-2−/− mice were injected intraventricularly with a herpes simplex virus-1 amplicon vector carrying FGF-2 gene, the number of BrdUrd-labeled cells increased significantly to values equivalent to wild-type littermates after kainate seizures. These results indicate that endogenously synthesized FGF-2 is necessary and sufficient to stimulate proliferation and differentiation of neuroprogenitor cells in the adult hippocampus after brain insult.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is not known whether the mammalian mechanism of coagulation initiation is conserved in fish. Identification of factor VII is critical in providing evidence for such a mechanism. A cDNA was cloned from a zebrafish (teleost) library that predicted a protein with sequence similarity to human factor VII. Factor VII was shown to be present in zebrafish blood and liver by Western blot analysis and immunohistochemistry. Immunodepletion of factor VII from zebrafish plasma selectively inhibited thromboplastin-triggered thrombin generation. Heterologous expression of zebrafish factor VII demonstrated a secreted protein (50 kDa) that reconstituted thromboplastin-triggered thrombin generation in immunodepleted zebrafish plasma. These results suggest conservation of the extrinsic coagulation pathway between zebrafish and humans and add credence to the zebrafish as a model for mammalian hemostasis. The structure of zebrafish factor VIIa predicted by homology modeling was consistent with the overall three-dimensional structure of human factor VIIa. However, amino acid disparities were found in the epidermal growth factor-2/serine protease regions that are present in the human tissue factorfactor VIIa contact surface, suggesting a structural basis for the species specificity of this interaction. In addition, zebrafish factor VII demonstrates that the Gla-EGF-EGF-SP domain structure, which is common to coagulation factors VII, IX, X, and protein C, was present before the radiation of the teleosts from the tetrapods. Identification of zebrafish factor VII significantly narrows the evolutionary window for development of the vertebrate coagulation cascade and provides insight into the structural basis for species specificity in the tissue factorfactor VIIa interaction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A constitutively active form of fibroblast growth factor 2 (FGFR2) was identified in rat osteosarcoma (ROS) cells by an expression cloning strategy. Unlike other tyrosine kinase receptors activated by N-terminal truncation in tumors, this receptor, FGFR2-ROS, contains an altered C terminus generated from chromosomal rearrangement with a novel gene, designated FGFR activating gene 1 (FRAG1). While the removal of the C terminus slightly activates FGFR2, the presence of the FRAG1 sequence drastically stimulates the transforming activity and autophosphorylation of the receptor. FGFR2-ROS is expressed as a unusually large protein and is highly phosphorylated in NIH 3T3 transfectants. FRAG1 is ubiquitously expressed and encodes a predicted protein of 28 kDa lacking significant structural similarity to known proteins. Epitope-tagged FRAG1 protein showed a perinuclear localization by immunofluorescence staining. The highly activated state of FGFR2-ROS appears to be attributed to constitutive dimer formation and higher phosphorylation level as well as possibly altered subcellular localization. These results indicate a unique mechanism of receptor activation by a C terminus alteration through a chromosomal fusion with FRAG1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deficiency of blood coagulation factor V or tissue factor causes the death of mouse embryos by 10.5 days of gestation, suggesting that part of the blood coagulation system is necessary for development. This function is proposed to require either generation of the serine protease thrombin and cell signaling through protease-activated receptors or an activity of tissue factor that is distinct from blood clotting. We find that murine deficiency of prothrombin clotting factor 2 (Cf2) was associated with the death of approximately 50% of Cf2−/− embryos by embryonic day 10.5 (E10.5), and surviving embryos had characteristic defects in yolk sac vasculature. Most of the remaining Cf2−/− embryos died by E15.5, but those surviving to E18.5 appeared normal. The rare Cf2−/− neonates died of hemorrhage on the first postnatal day. These studies suggest that a part of the blood coagulation system is adapted to perform a developmental function. Other mouse models show that the absence of platelets or of fibrinogen does not cause fetal wastage. Therefore, the role of thrombin in development may be independent of its effects on blood coagulation and instead may involve signal transduction on cells other than platelets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Steroids, thyroid hormones, vitamin D3, and retinoids are lipophilic small molecules that regulate diverse biological effects such as cell differentiation, development, and homeostasis. The actions of these hormones are mediated by steroid/nuclear receptors which function as ligand-dependent transcriptional regulators. Transcriptional activation by ligand-bound receptors is a complex process requiring dissociation and recruitment of several additional cofactors. We report here the cloning and characterization of receptor-associated coactivator 3 (RAC3), a human transcriptional coactivator for steroid/nuclear receptors. RAC3 interacts with several liganded receptors through a mechanism which requires their respective ligand-dependent activation domains. RAC3 can activate transcription when tethered to a heterologous DNA-binding domain. Overexpression of RAC3 enhances the ligand-dependent transcriptional activation by the receptors in mammalian cells. Sequence analysis reveals that RAC3 is related to steroid receptor coactivator 1 (SRC-1) and transcriptional intermediate factor 2 (TIF2), two of the most potent coactivators for steroid/nuclear receptors. Thus, RAC3 is a member of a growing coactivator network that should be useful as a tool for understanding hormone action and as a target for developing new therapeutic agents that can block hormone-dependent neoplasia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent investigations have shown that the maintenance of genomic imprinting of the murine insulin-like growth factor 2 (Igf2) gene involves at least two factors: the DNA (cytosine-5-)-methyltransferase activity, which is required to preserve the paternal specific expression of Igf2, and the H19 gene (lying 90 kb downstream of Igf2 gene), which upon inactivation leads to relaxation of the Igf2 imprint. It is not yet clear how these two factors are related to each other in the process of maintenance of Igf2 imprinting and, in particular, whether the latter is acting through cis elements or whether the H19 RNA itself is involved. By using Southern blots and the bisulfite genomic-sequencing technique, we have investigated the allelic methylation patterns (epigenotypes) of the Igf2 gene in two strains of mouse with distinct deletions of the H19 gene. The results show that maternal transmission of H19 gene deletions leads the maternal allele of Igf2 to adopt the epigenotype of the paternal allele and indicate that this phenomenon is influenced directly or indirectly by the H19 gene expression. More importantly, the bisulfite genomic-sequencing allowed us to show that the methylation pattern of the paternal allele of the Igf2 gene is affected in trans by deletions of the active maternal allele of the H19 gene. Selection during development for the appropriate expression of Igf2, dosage-dependent factors that bind to the Igf2 gene, or methylation transfer between the parental alleles could be involved in this trans effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bovine papillomavirus type 1 (BPV-1) exonic splicing suppressor (ESS) is juxtaposed immediately downstream of BPV-1 splicing enhancer 1 and negatively modulates selection of a suboptimal 3′ splice site at nucleotide 3225. The present study demonstrates that this pyrimidine-rich ESS inhibits utilization of upstream 3′ splice sites by blocking early steps in spliceosome assembly. Analysis of the proteins that bind to the ESS showed that the U-rich 5′ region binds U2AF65 and polypyrimidine tract binding protein, the C-rich central part binds 35- and 54–55-kDa serine/arginine-rich (SR) proteins, and the AG-rich 3′ end binds alternative splicing factor/splicing factor 2. Mutational and functional studies indicated that the most critical region of the ESS maps to the central C-rich core (GGCUCCCCC). This core sequence, along with additional nonspecific downstream nucleotides, is sufficient for partial suppression of spliceosome assembly and splicing of BPV-1 pre-mRNAs. The inhibition of splicing by the ESS can be partially relieved by excess purified HeLa SR proteins, suggesting that the ESS suppresses pre-mRNA splicing by interfering with normal bridging and recruitment activities of SR proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mouse insulin-like growth factor 2 (Igf2) locus is a complex genomic region that produces multiple transcripts from alternative promoters. Expression at this locus is regulated by parental imprinting. However, despite the existence of putative imprinting control elements in the Igf2 upstream region, imprinted transcriptional repression is abolished by null mutations at the linked H19 locus. To clarify the extent to which the Igf2 upstream region contains autonomous imprinting control elements we have performed functional and comparative analyses of the region in the mouse and human. Here we report the existence of multiple, overlapping imprinted (maternally repressed) sense and antisense transcripts that are associated with a tandem repeat in the mouse Igf2 upstream region. Regions flanking the repeat exhibit tissue-specific parental allelic methylation patterns, suggesting the existence of tissue-specific control elements in the upstream region. Studies in H19 null mice indicate that both parental allelic methylation and monoallelic expression of the upstream transcripts depends on an intact H19 gene acting in cis. The homologous region in human IGF2 is structurally conserved, with the significant exception that it does not contain a tandem repeat. Our results support the proposal that tandem repeats act to target methylation to imprinted genetic loci.