26 resultados para FACTOR ANTAGONIST


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immune cell-derived opioid peptides can activate opioid receptors on peripheral sensory nerves to inhibit inflammatory pain. The intrinsic mechanisms triggering this neuroimmune interaction are unknown. This study investigates the involvement of endogenous corticotropin-releasing factor (CRF) and interleukin-1beta (IL-1). A specific stress paradigm, cold water swim (CWS), produces potent opioid receptor-specific antinociception in inflamed paws of rats. This effect is dose-dependently attenuated by intraplantar but not by intravenous alpha-helical CRF. IL-1 receptor antagonist is ineffective. Similarly, local injection of antiserum against CRF, but not to IL-1, dose-dependently reverses this effect. Intravenous anti-CRF is only inhibitory at 10(4)-fold higher concentrations and intravenous CRF does not produce analgesia. Pretreatment of inflamed paws with an 18-mer 3'-3'-end inverted CRF-antisense oligodeoxynucleotide abolishes CWS-induced antinociception. The same treatment significantly reduces the amount of CRF extracted from inflamed paws and the number of CRF-immunostained cells without affecting gross inflammatory signs. A mismatch oligodeoxynucleotide alters neither the CWS effect nor CRF immunoreactivity. These findings identify locally expressed CRF as the predominant agent to trigger opioid release within inflamed tissue. Endogenous IL-1, circulating CRF or antiinflammatory effects, are not involved. Thus, an intact immune system plays an essential role in pain control, which is important for the understanding of pain in immunosuppressed patients with cancer or AIDS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare here the mechanisms of apoptotic death of PC12 cells induced by down-regulation of Cu2+,Zn2+ superoxide dismutase (SOD1) and withdrawal of trophic support (serum/nerve growth factor). Our previous results indicated that the initiating causes of death are different in each paradigm. However, bcl-2 rescues cells in either paradigm, suggesting common downstream elements to the cell death pathway. To determine whether the ICE [interleukin 1beta converting enzyme] family of proteases, which is required for apoptosis on trophic factor withdrawal, is also required for apoptosis induced by oxidative stress, we have developed a novel peptide inhibitor that mimics the common catalytic site of these enzymes and thereby blocks their access to substrates. This differs from the more usual pseudosubstrate approach to enzyme inhibition. Blockade of ICE family proteases by either this inhibitor or by a permeant competitive ICE family antagonist rescues PC12 cells from apoptotic death following apoptosis induced by down-regulation of SOD1, as well as from trophic factor/nerve growth factor deprivation. SOD1 down-regulation results in an increase in interleukin 1beta (IL- 1beta) production by the cells, and cell death under these conditions can be prevented by either blocking antibodies against IL-1beta or the IL-1 receptor antagonist (IL-1Ralpha). In contrast, trophic factor withdrawal does not increase IL-1beta secretion, and the blocking antibody failed to protect PC12 cells from trophic factor withdrawal, whereas the receptor antagonist was only partially protective at very high concentrations. There were substantial differences in the concentrations of pseudosubstrate inhibitors which rescued cells from SOD1 down-regulation and trophic factor deprivation. These results suggest the involvement of different members of the ICE family, different substrates, or both in the two different initiating causes of cell death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nerve growth factor (NGF) is well characterized for its neurotrophic actions on peripheral sensory and sympathetic neurons and on central cholinergic neurons of the basal forebrain. Recent evidence, however, has shown high levels of NGF to be present in a variety of biological fluids after inflammatory and autoimmune responses, suggesting that NGF is a mediator of immune interactions. Increased NGF serum levels have been reported in both humans and experimental animal models of psychological and physical stress, thus implicating NGF in neuroendocrine interactions as well. The possible source(s) and the regulatory mechanisms involved in the control of serum NGF levels, however, still remain to be elucidated. We now report the presence of both NGF gene transcripts and protein in the anterior pituitary. Immunofluorescence analysis indicated that hypophysial NGF is selectively localized in mammotroph cells and stored in secretory granules. NGF is cosecreted with prolactin from mammotroph cells by a neurotransmitter-dependent mechanism that can be pharmacologically regulated. Activation of the dopamine D2 receptor subtype, which physiologically controls prolactin release, resulted in a complete inhibition of vasoactive intestinal peptide-stimulated NGF secretion in vitro, whereas the specific D2 antagonist (-)-sulpiride stimulated NGF secretion in vivo, suggesting that the anterior pituitary is a possible source of circulating NGF. Given the increased NGF serum levels in stressful conditions and the newly recognized immunoregulatory function of this protein, NGF, together with prolactin, may thus be envisaged as an immunological alerting signal under neuronal control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell-specific activation of the transcription factor sigma F during sporulation in Bacillus subtilis is controlled by a regulatory pathway involving the proteins SpoIIE, SpoIIAA, and SpoIIAB. SpoIIAB is an antagonist of sigma F, and SpoIIAA, which is capable of overcoming SpoIIAB-mediated inhibition of sigma F, is an antagonist of SpoIIAB. SpoIIAA is, in turn, negatively regulated by SpoIIAB, which phosphorylates SpoIIAA on serine 58. SpoIIAA is also positively regulated by SpoIIE, which dephosphorylates SpoIIAA-P, the phosphorylated form of SpoIIAA. Here, isoelectric focusing and Western blot analysis were used to examine the phosphorylation state of SpoIIAA in vivo. SpoIIAA was found to be largely in the phosphorylated state during sporulation in wild-type cells but a significant portion of the protein that was unphosphorylated could also be detected. Consistent with the idea that SpoIIE governs dephosphorylation of SpoIIAA-P, SpoIIAA was entirely in the phosphorylated state in spoIIE mutant cells. Conversely, overexpression of spoIIE led to an increase in the ratio of unphosphorylated SpoIIAA to SpoIIAA-P and caused inappropriate activation of sigma F in the predivisional sporangium. We also show that a mutant form of SpoIIAA (SpoIIAA-S58T) in which serine 58 was replaced with threonine was present exclusively as SpoIIAA-P, a finding that confirms previous biochemical evidence that the mutant protein is an effective substrate for the SpoIIAB kinase but that SpoIIAA-S58T-P cannot be dephosphorylated by SpoIIE. We conclude that SpoIIE plays a crucial role in controlling the phosphorylation state of SpoIIAA during sporulation and thus in governing the cell-specific activation of sigma F.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human granulocyte-macrophage colony-stimulating factor (GM-CSF) binds to a high-affinity heterodimeric receptor composed of a specific alpha chain and a common beta chain (beta(c)), which is shared with the receptors for interleukins 3 and 5. Hemopoietic cell survival requires GM-CSF binding this high-affinity receptor. We have recently developed the GM-CSF mutant E21R, which selectively binds to the alpha chain and behaves as a competitive GM-CSF antagonist. We have now examined the role of E21R on the survival of hemopoietic cells and found that E21R causes apoptosis (programmed cell death) of normal and malignant cells directly in the absence of GM-CSF. The direct apoptotic effect of E21R occurred in a dose- and time-dependent manner. Apoptosis by E21R was dependent on cells expressing the high-affinity GM-CSF receptor and could be blocked by GM-CSF. Significantly, apoptosis of the cells occurred even in the presence of the survival factors granulocyte CSF and stem cell factor but was prevented by engagement of beta(c) with interleukin 3. The initiation of apoptosis required phosphorylation, transcriptional activity, and protein synthesis. These findings support a model whereby binding of E21R to the alpha chain leads to apoptosis, while beta(c) plays an important role in cell survival. This model may be applicable to other multimeric cytokine receptors and offers a novel approach for the treatment of human leukemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We previously reported that CO2 laser incisions in carcinogen-initiated fields promoted cancer development and caused release of growth factors. Here we examined the quantitative and additive properties of this tumor-promoting event and examined whether this promotion could be nullified by treatment with a bombesin antagonist, which down-regulates epidermal growth factor receptors. The model used for cancer promotion was the hamster buccal cheek pouch that had been treated with a carcinogen (9,10-dimethyl-1,2-benzanthracene) for 6 weeks, producing premalignant lesions. These lesions would evolve into a cancer eventually without further treatment. Promotion was measured both by increased fluorescence in response to systemically administered Photofrin, measured noninvasively using an in vivo fluorescence photometer, and by the timing of appearance of clinical tumors. Laser incisions (0-3) were made into the hamster cheek 1 week apart, or three incisions were done 1 day apart. Another group of animals received bombesin antagonist RC-3095 for 4 weeks during the time incisions were made, again measuring promotion. Laser incisions 1 week apart produced additive promotion, whereas three incisions 1 day apart were not statistically different from the group receiving only one incision. RC-3095 treatment completely eliminated the promoting effects of incision and totally stopped promotion for the 4-week period of treatment. After discontinuing treatment with RC-3095, lesion progression resumed at the untreated control rate. This work confirms that the promoting event of a laser incision follows a comparable time course to release of growth factors after such an incision and that it can be eliminated by treatment with bombesin antagonists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clotting factor XII (Hageman factor) contains epidermal growth factor (EGF)-homologous domains and is reported to be a potent mitogen for human hepatoma (HepG2) cells. In this study, we tested whether factor XII exhibits growth factor activity on several other EGF-sensitive target cells, including fetal hepatocytes, endothelial cells, alveolar type II cells, and aortic smooth muscle cells. We found that factor XII significantly enhanced [3H]thymidine incorporation in aortic smooth muscle cells (SMCs) and all other cells tested. Tyrphostin, a growth factor receptor/tyrosine kinase antagonist, inhibited both EGF- and factor XII-induced responses. However, differences in the levels of magnitude of DNA synthesis, the observed synergism between EGF and factor XII, and the differential sensitivity to tyrphostin suggest that the EGF receptor and the factor XII receptor may be nonidentical. The factor XII-induced mitogenic response was achieved at concentrations that were 1/10th the physiologic range for the circulating factor and was reduced by popcorn inhibitor, a specific factor XII protease inhibitor. Treatment of aortic SMCs with factor XII, as well as activated factor XII, resulted in a rapid and transient activation of a mitogen-activated/extracellular signal-regulated protein kinase with peak activity/tyrosine phosphorylation observed at 5 to 10 min of exposure. Taken together, these data (i) confirm that clotting factor XII functions as a mitogenic growth factor and (ii) demonstrate that factor XII activates a signal transduction pathway, which includes a mitogen-activated protein kinase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of severe visual loss in the United States results from complications associated with retinal neovascularization in patients with ischemic ocular diseases such as diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity. Intraocular expression of the angiogenic protein vascular endothelial growth factor (VEGF) is closely correlated with neovascularization in these human disorders and with ischemia-induced retinal neovascularization in mice. In this study, we evaluated whether in vivo inhibition of VEGF action could suppress retinal neovascularization in a murine model of ischemic retinopathy. VEGF-neutralizing chimeric proteins were constructed by joining the extracellular domain of either human (Flt) or mouse (Flk) high-affinity VEGF receptors with IgG. Control chimeric proteins that did not bind VEGF were also used. VEGF-receptor chimeric proteins eliminated in vitro retinal endothelial cell growth stimulation by either VEGF (P < 0.006) or hypoxic conditioned medium (P < 0.005) without affecting growth under nonstimulated conditions. Control proteins had no effect. To assess in vivo response, animals with bilateral retinal ischemia received intravitreal injections of VEGF antagonist in one eye and control protein in the contralateral eye. Retinal neovascularization was quantitated histologically by a masked protocol. Retinal neovascularization in the eye injected with human Flt or murine Flk chimeric protein was reduced in 100% (25/25; P < 0.0001) and 95% (21/22; P < 0.0001) 0.0001) of animals, respectively, compared to the control treated eye. This response was evident after only a single intravitreal injection and was dose dependent with suppression of neovascularization noted after total delivery of 200 ng of protein (P < 0.002). Reduction of histologically evident neovascular nuclei per 6-microns section averaged 47% +/- 4% (P < 0.001) and 37% +/- 2% (P < 0.001) for Flt and Flk chimeric proteins with maximal inhibitory effects of 77% and 66%, respectively. No retinal toxicity was observed by light microscopy. These data demonstrate VEGF's causal role in retinal angiogenesis and prove the potential of VEGF inhibition as a specific therapy for ischemic retinal disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predictive methods, physicochemical measurements, and structure activity relationship studies suggest that corticotropin-releasing factor (CRF; corticoliberin), its family members, and competitive antagonists (resulting from N-terminal deletions) usually assume an alpha-helical conformation when interacting with the CRF receptor(s). To test this hypothesis further, we have scanned the whole sequence of the CRF antagonist [D-Phe12,Nle21,38]r/hCRF-(12-41) (r/hCRF, rat/human CRF; Nle, norleucine) with an i-(i + 3) bridge consisting of the Glu-Xaa-Xaa-Lys scaffold. We have found astressin [cyclo(30-33)[D-Phe12,Nle21,38,Glu30,Lys33]r/ hCRF(12-41)] to be approximately 30 times more potent than [D-Phe12,Nle21,38]r/hCRF-(12-41), our present standard, and 300 times more potent than the corresponding linear analog in an in vitro pituitary cell culture assay. Astressin has low affinity for the CRF binding protein and high affinity (Ki = 2 nM) for the cloned pituitary receptor. Radioiodinated [D-125I-Tyr12]astressin was found to be a reliable ligand for binding assays. In vivo, astressin is significantly more potent than any previously tested antagonist in reducing hypophyseal corticotropin (ACTH) secretion in stressed or adrenalectomized rats. The cyclo(30-33)[Ac-Pro4,D-Phe12,Nle21,38,Glu30,Lys33++ +]r/hCRF-(4-41) agonist and its linear analog are nearly equipotent, while the antagonist astressin and its linear form vary greatly in their potencies. This suggests that the lactam cyclization reinstates a structural constraint in the antagonists that is normally induced by the N terminus of the agonist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine), which is thought to be a retrograde messenger in long-term potentiation (LTP), enhances glutamate release and LTP through an action on presynaptic nerve endings. The PAF antagonist BN 52021 blocks CA1 LTP in hippocampal slices, and, when infused into rat dorsal hippocampus pre- or posttraining, blocks retention of inhibitory avoidance. Here we report that memory is affected by pre- or posttraining infusion of the PAF analog 1-O-hexadecyl-2-N-methylcarbamoyl-sn-glycerol-3-phosphocholine (mc-PAF) into either rat dorsal hippocampus, amygdala, or entorhinal cortex. Male Wistar rats were implanted bilaterally with cannulae in these brain regions. After recovery from surgery, the animals were trained in step-down inhibitory avoidance or in a spatial habituation task and tested for retention 24 h later. mc-PAF (1.0 microgram per side) enhanced retention test performance of the two tasks when infused into the hippocampus before training without altering training session performance. In addition, mc-PAF enhanced retention test performance of the avoidance task when infused into (i) the hippocampus 0 but not 60 min after training; (ii) the amygdala immediately after training; and (iii) the entorhinal cortex 100 but not 0 or 300 min after training. In confirmation of previous findings, BN 52021 (0.5 microgram per side) was found to be amnestic for the avoidance task when infused into the hippocampus or the amygdala immediately but not 30 or more minutes after training or into the entorhinal cortex 100 but not 0 or 300 min after training. These findings support the hypothesis that memory involves PAF-regulated events, possibly LTP, generated at the time of training in hippocampus and amygdala and 100 min later in the entorhinal cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed structure-function analysis of human interleukin 5 (hIL5) has been performed. The hIL5 receptor is composed of two different polypeptide chains, the alpha and beta subunits. The alpha subunit alone is sufficient for ligand binding, but association with the beta subunit leads to a 2- to 3-fold increase in binding affinity. The beta chain is shared with the receptors for IL3 and granulocyte/macrophage-colony-stimulating factor--hence the descriptor beta C (C for common). All hIL5 mutants were analyzed in a solid-phase binding assay for hIL5R alpha interaction and in a proliferation assay using IL5-dependent cell lines for receptor-complex activation. Most residues affecting binding to the receptor alpha subunit were clustered in a loop connecting beta-strand 1 and helix B (mutants H38A, K39A, and H41A), in beta-strand 2 (E89A and R91A; weaker effect for E90A) and close to the C terminus (T109A, E110A, W111S, and I112A). Mutations at one position, E13 (Glu13), caused a reduced activation of the hIL5 receptor complex. In the case of E13Q, only 0.05% bioactivity was detected on a hIL5-responsive subclone of the mouse promyelocytic cell line FDC-P1. Moreover, on hIL5-responsive TF1 cells, the same mutant was completely inactive and proved to have antagonistic properties. Interactions of this mutant with both receptor subunits were nevertheless indistinguishable from those of nonmutated hIL5 by crosslinking and Scatchard plot analysis of transfected COS-1 cells.