25 resultados para Extracellular Matrix Accumulation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Haptokinetic cell migration across surfaces is mediated by adhesion receptors including β1 integrins and CD44 providing adhesion to extracellular matrix (ECM) ligands such as collagen and hyaluronan (HA), respectively. Little is known, however, about how such different receptor systems synergize for cell migration through three-dimensionally (3-D) interconnected ECM ligands. In highly motile human MV3 melanoma cells, both β1 integrins and CD44 are abundantly expressed, support migration across collagen and HA, respectively, and are deposited upon migration, whereas only β1 integrins but not CD44 redistribute to focal adhesions. In 3-D collagen lattices in the presence or absence of HA and cross-linking chondroitin sulfate, MV3 cell migration and associated functions such as polarization and matrix reorganization were blocked by anti-β1 and anti-α2 integrin mAbs, whereas mAbs blocking CD44, α3, α5, α6, or αv integrins showed no effect. With use of highly sensitive time-lapse videomicroscopy and computer-assisted cell tracking techniques, promigratory functions of CD44 were excluded. 1) Addition of HA did not increase the migratory cell population or its migration velocity, 2) blocking of the HA-binding Hermes-1 epitope did not affect migration, and 3) impaired migration after blocking or activation of β1 integrins was not restored via CD44. Because α2β1-mediated migration was neither synergized nor replaced by CD44–HA interactions, we conclude that the biophysical properties of 3-D multicomponent ECM impose more restricted molecular functions of adhesion receptors, thereby differing from haptokinetic migration across surfaces.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cell adhesion to individual macromolecules of the extracellular matrix has dramatic effects on the subcellular localization of the actin-bundling protein fascin and on the ability of cells to form stable fascin microspikes. The actin-binding activity of fascin is down-regulated by phosphorylation, and we used two differentiated cell types, C2C12 skeletal myoblasts and LLC-PK1 kidney epithelial cells, to examine the hypothesis that cell adhesion to the matrix components fibronectin, laminin-1, and thrombospondin-1 differentially regulates fascin phosphorylation. In both cell types, treatment with the PKC activator 12-tetradecanoyl phorbol 13-acetate (TPA) or adhesion to fibronectin led to a diffuse distribution of fascin after 1 h. C2C12 cells contain the PKC family members α, γ, and λ, and PKCα localization was altered upon cell adhesion to fibronectin. Two-dimensional isoelectric focusing/SDS-polyacrylamide gels were used to determine that fascin became phosphorylated in cells adherent to fibronectin and was inhibited by the PKC inhibitors calphostin C and chelerythrine chloride. Phosphorylation of fascin was not detected in cells adherent to thrombospondin-1 or to laminin-1. LLC-PK1 cells expressing green fluorescent protein (GFP)-fascin also displayed similar regulation of fascin phosphorylation. LLC-PK1 cells expressing GFP-fascin S39A, a nonphosphorylatable mutant, did not undergo spreading and focal contact organization on fibronectin, whereas cells expressing a GFP-fascin S39D mutant with constitutive negative charge spread more extensively than wild-type cells. In contrast, C2C12 cells coexpressing S39A fascin with endogenous fascin remained competent to form microspikes on thrombospondin-1, and cells that expressed fascin S39D attached to thrombospondin-1 but did not form microspikes. Blockade of PKCα activity by TPA-induced down-regulation led to actin association of wild-type fascin in fibronectin-adherent C2C12 and LLC-PK1 cells but did not alter the distribution of S39A or S39D fascins. The association of fascin with actin in fibronectin-adherent cells was also evident in the presence of an inhibitory antibody to integrin α5 subunit. These novel results establish matrix-initiated PKC-dependent regulation of fascin phosphorylation at serine 39 as a mechanism whereby matrix adhesion is coupled to the organization of cytoskeletal structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cells of the craniofacial skeleton are derived from a common mesenchymal progenitor. The regulatory factors that control their differentiation into various cell lineages are unknown. To investigate the biological function of dentin matrix protein 1 (DMP1), an extracellular matrix gene involved in calcified tissue formation, stable transgenic cell lines and adenovirally infected cells overexpressing DMP1 were generated. The findings in this paper demonstrate that overexpression of DMP1 in pluripotent and mesenchyme-derived cells such as C3H10T1/2, MC3T3-E1, and RPC-C2A can induce these cells to differentiate and form functional odontoblast-like cells. Functional differentiation of odontoblasts requires unique sets of genes being turned on and off in a growth- and differentiation-specific manner. The genes studied include transcription factors like core binding factor 1 (Cbfa1), bone morphogenetic protein 2 (BMP2), and BMP4; early markers for extracellular matrix deposition like alkaline phosphatase (ALP), osteopontin, osteonectin, and osteocalcin; and late markers like DMP2 and dentin sialoprotein (DSP) that are expressed by terminally differentiated odontoblasts and are responsible for the formation of tissue-specific dentin matrix. However, this differentiation pathway was limited to mesenchyme-derived cells only. Other cell lines tested by the adenoviral expression system failed to express odontoblast-phenotypic specific genes. An in vitro mineralized nodule formation assay demonstrated that overexpressed cells could differentiate and form a mineralized matrix. Furthermore, we also demonstrate that phosphorylation of Cbfa1 (osteoblast-specific transcription factor) was not required for the expression of odontoblast-specific genes, indicating the involvement of other unidentified odontoblast-specific transcription factors or coactivators. Cell lines that differentiate into odontoblast-like cells are useful tools for studying the mechanism involved in the terminal differentiation process of these postmitotic cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ATP, which is present in the extracellular matrix of multicellular organisms and in the extracellular fluid of unicellular organisms, has been shown to function as a signaling molecule in animals. The concentration of extracellular ATP (xATP) is known to be functionally modulated in part by ectoapyrases, membrane-associated proteins that cleave the γ- and β-phosphates on xATP. We present data showing a previously unreported (to our knowledge) linkage between apyrase and phosphate transport. An apyrase from pea (Pisum sativum) complements a yeast (Saccharomyces cerevisiae) phosphate-transport mutant and significantly increases the amount of phosphate taken up by transgenic plants overexpressing the gene. The transgenic plants show enhanced growth and augmented phosphate transport when the additional phosphate is supplied as inorganic phosphate or as ATP. When scavenging phosphate from xATP, apyrase mobilizes the γ-phosphate without promoting the transport of the purine or the ribose.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tissue remodeling often reflects alterations in local mechanical conditions and manifests as an integrated response among the different cell types that share, and thus cooperatively manage, an extracellular matrix. Here we examine how two different cell types, one that undergoes the stress and the other that primarily remodels the matrix, might communicate a mechanical stress by using airway cells as a representative in vitro system. Normal stress is imposed on bronchial epithelial cells in the presence of unstimulated lung fibroblasts. We show that (i) mechanical stress can be communicated from stressed to unstressed cells to elicit a remodeling response, and (ii) the integrated response of two cell types to mechanical stress mimics key features of airway remodeling seen in asthma: namely, an increase in production of fibronectin, collagen types III and V, and matrix metalloproteinase type 9 (MMP-9) (relative to tissue inhibitor of metalloproteinase-1, TIMP-1). These observations provide a paradigm to use in understanding the management of mechanical forces on the tissue level.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cleft lip and palate syndromes are among the most common congenital malformations in humans. Mammalian palatogenesis is a complex process involving highly regulated interactions between epithelial and mesenchymal cells of the palate to permit correct positioning of the palatal shelves, the remodeling of the extracellular matrix (ECM), and subsequent fusion of the palatal shelves. Here we show that several matrix metalloproteinases (MMPs), including a cell membrane-associated MMP (MT1-MMP) and tissue inhibitor of metalloproteinase-2 (TIMP-2) were highly expressed by the medial edge epithelium (MEE). MMP-13 was expressed both in MEE and in adjacent mesenchyme, whereas gelatinase A (MMP-2) was expressed by mesenchymal cells neighboring the MEE. Transforming growth factor (TGF)-β3-deficient mice, which suffer from clefting of the secondary palate, showed complete absence of TIMP-2 in the midline and expressed significantly lower levels of MMP-13 and slightly reduced levels of MMP-2. In concordance with these findings, MMP-13 expression was strongly induced by TGF-β3 in palatal fibroblasts. Finally, palatal shelves from prefusion wild-type mouse embryos cultured in the presence of a synthetic inhibitor of MMPs or excess of TIMP-2 failed to fuse and MEE cells did not transdifferentiate, phenocopying the defect of the TGF-β3-deficient mice. Our observations indicate for the first time that the proteolytic degradation of the ECM by MMPs is a necessary step for palatal fusion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Normal epithelial cells undergo apoptosis when they are denied contact with the extracellular matrix, in a process termed “anoikis.” Conversely, malignant epithelial cells typically acquire anchorage independence, i.e., the capacity to survive and grow in the absence of matrix interaction. Here we asked the question whether anoikis is affected by signaling through the EGF receptor (EGFR). We focused on the EGFR because EGFR signaling is frequently deregulated in malignant epithelial cells. We demonstrate that EGFR activation markedly alleviated the requirement of matrix engagement for survival of primary and immortalized human keratinocytes in suspension culture. Protection of epithelial cells through EGFR activation against anoikis was associated with and required sustained MAPK phosphorylation during the early phase of suspension culture. Interestingly, high levels of MAPK phosphorylation were not only required for EGFR-mediated protection against anoikis but also occurred as a consequence of caspase activation at later stages of suspension culture. These results demonstrate that EGFR activation contributes to anchorage-independent epithelial cell survival and identify MAPK activation as an important mechanism in this process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fucoid algae release gametes into seawater following an inductive light period (potentiation), and gamete expulsion from potentiated receptacles of Pelvetia compressa began about 2 min after a light-to-dark transition. Agitation of the medium reversed potentiation, with an exponential time course completed in about 3 h. Light regulated two signaling pathways during potentiation and gamete expulsion: a photosynthetic pathway and a photosynthesis-independent pathway in which red light was active but blue light was not. Uptake of K+ appears to have an important role in potentiation, because a 50% inhibition of potentiation occurred in the presence of the tetraethylammonium ion, a K+-channel blocker. A central role of anion channels in the maintenance of potentiation is suggested by the premature release of gametes in the light when receptacles were incubated with inhibitors of slow-type anion channels. An inhibitor of tyrosine kinases, tyrphostin A63, also inhibited potentiation. A model for gamete release from P. compressa is presented that proposes that illumination results in the accumulation of ions (e.g. K+) throughout the cells of the receptacle during potentiation, which then move into the extracellular matrix during gamete expulsion to generate osmomechanical force, resulting in gamete release.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transmitting tissue-specific (TTS) protein is a pollen tube growth-promoting and attracting glycoprotein located in the stylar transmitting tissue extracellular matrix of the pistil of tobacco. The TTS protein backbones have a deduced molecular mass of about 28 kDa, whereas the glycosylated stylar TTS proteins have apparent molecular masses ranging between 50 and 100 kDa. TTS mRNAs and proteins are ectopically produced in transgenic tobacco plants that express either a cauliflower mosaic virus (CaMV) 35S promoter-TTS2 transgene or a CaMV 35S-promoter-NAG1 (NAG1 = Nicotiana tabacum Agamous gene) transgene. However, the patterns of TTS mRNA and protein accumulation and the quality of the TTS proteins produced are different in these two types of transgenic plants. In 35S-TTS transgenic plants, TTS mRNAs and proteins accumulate constitutively in vegetative and floral tissues. However, the ectopically expressed TTS proteins in these transgenic plants accumulate as underglycosylated protein species with apparent molecular masses between 30 and 50 kDa. This indicates that the capacity to produce highly glycosylated TTS proteins is restricted to the stylar transmitting tissue. In 35S-NAG transgenic plants, NAG1 mRNAs accumulate constitutively in vegetative and floral tissues, and TTS mRNAs are induced in the sepals of these plants. Moreover, highly glycosylated TTS proteins in the 50- to 100-kDa molecular mass range accumulate in the sepals of these transgenic, 35S-NAG plants. These results show that the tobacco NAGI gene, together with other yet unidentified regulatory factors, control the expression of TTS genes and the cellular capacity to glycosylate TTS proteins, which are normally expressed very late in the pistil developmental pathway and function in the final stage of floral development. The sepals in the transgenic 35S-NAG plants also support efficient pollen germination and tube growth, similar to what normally occurs in the pistil, and this ability correlates with the accumulation of the highest levels of the 50- to 100-kDa glycosylated TTS proteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Macrophages secrete a variety of proteinases that are thought to participate in remodeling of the extracellular matrix associated with inflammatory processes. We have eliminated expression of the macrophage metalloelastase (MME) gene by targeted disruption to assess the role of this protein in macrophage-mediated proteolysis. We found that the macrophages of MME-deficient (MME-/-) mice have a markedly diminished capacity to degrade extracellular matrix components. In addition, MME-/- macrophages are essentially unable to penetrate reconstituted basement membranes in vitro and in vivo. MME is therefore required for macrophage-mediated extracellular matrix proteolysis and tissue invasion.