20 resultados para Exploratory factor analyses


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The protein encoded by the gamma 134.5 gene of herpes simplex virus precludes premature shutoff of protein synthesis in human cells triggered by stress associated with onset of viral DNA synthesis. The carboxyl terminus of the protein is essential for this function. This report indicates that the shutoff of protein synthesis is not due to mRNA degration because mRNA from wild-type or gamma 134.5- virus-infected cells directs protein synthesis. Analyses of the posttranslational modifications of translation initiation factor eIF-2 showed the following: (i) eIF-2 alpha was selectively phosphorylated by a kinase present in ribosome-enriched fraction of cells infected with gamma 134.5- virus. (ii) Endogenous eIF-2 alpha was totally phosphorylated in cells infected with gamma 134.5- virus or a virus lacking the 3' coding domain of the gamma 134.5 gene but was not phosphorylated in mock-infected or wild-type virus-infected cells. (iii) Immune precipitates of the PKR kinase that is responsible for regulation of protein synthesis of some cells by phosphorylation of eIF-2 alpha yielded several phosphorylated polypeptides. Of particular significance were two observations. First, phosphorylation of PKR kinase was elevated in all infected cells relative to the levels in mock-infected cells. Second, the precipitates from lysates of cells infected with gamma 134.5- virus or a virus lacking the 3' coding domain of the gamma 134.5 gene contained an additional labeled phosphoprotein of M(r) 90,000 (p90). This phosphoprotein was present in only trace amounts in the immunoprecipitate from cells infected with wild-type virus or mutants lacking a portion of the 5' domain of gamma 134.5. We conclude that in the absence of gamma 134.5 protein, PKR kinase complexes with the p90 phosphoprotein and shuts off protein synthesis by phosphorylation of the alpha subunit of translation initiation factor eIF-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NMP-1 was initially identified as a nuclear matrix-associated DNA-binding factor that exhibits sequence-specific recognition for the site IV regulatory element of a histone H4 gene. This distal promoter domain is a nuclear matrix interaction site. In the present study, we show that NMP-1 is the multifunctional transcription factor YY1. Gel-shift and Western blot analyses demonstrate that NMP-1 is immunoreactive with YY1 antibody. Furthermore, purified YY1 protein specifically recognizes site IV and reconstitutes the NMP-1 complex. Western blot and gel-shift analyses indicate that YY1 is present within the nuclear matrix. In situ immunofluorescence studies show that a significant fraction of YY1 is localized in the nuclear matrix, principally but not exclusively associated with residual nucleoli. Our results confirm that NMP-1/YY1 is a ubiquitous protein that is present in both human cells and in rat osteosarcoma ROS 17/2.8 cells. The finding that NMP-1 is identical to YY1 suggests that this transcriptional regulator may mediate gene-matrix interactions. Our results are consistent with the concept that the nuclear matrix may functionally compartmentalize the eukaryotic nucleus to support regulation of gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear factor kappa B (NF-kappa B) is a transcription factor regulating expression of genes intrinsic to inflammation and cell proliferation--features of asbestos-associated diseases. In studies here, crocidolite asbestos caused protracted and dose-responsive increases in proteins binding to nuclear NF-kappa B-binding DNA elements in hamster tracheal epithelial (HTE) cells. This binding was modulated by cellular glutathione levels. Antibodies recognizing p65 and p50 protein members of the NF-kappa B family revealed these proteins in two of the DNA complexes. Transient transfection assays with a construct containing six NF-kappa B-binding DNA consensus sites linked to a luciferase reporter gene indicated that asbestos induced transcriptional activation of NF-kappa B-dependent genes, an observation that was confirmed by northern blot analyses for c-myc mRNA levels in HTE cells. Studies suggest that NF-kappa B induction by asbestos is a key event in regulation of multiple genes involved in the pathogenesis of asbestos-related lung cancers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transforming growth factors beta (TGF-beta s) are important modulators of growth and differentiation. They are intermolecular disulfide-bonded homodimeric molecules. The monomer fold has a conserved cystine knot and lacks a hydrophobic core. The biological specificity of a given member of the family is believed to be determined by the conformational flexibility of the variable loop regions of the monomer. The monomer subunit assembly in the dimer is stabilized mainly by hydrophobic contacts and a few hydrogen bonds. Since these interactions are nondirectional, we examined subunit assemblies of TGF-beta by using conformational analysis. The different subunit assemblies in TGF-beta 2 dimer were characterized in terms of the intersubunit disulfide torsion. Our analyses show that the subunit assemblies fall into two states: the crystallographically observed gauche+conformation and the previously not reported gauche--conformation, both having almost identical interaction energies. Furthermore, there is significant flexibility in the subunit assembly within the gauche+ and the gauche- states of the disulfide bond. The monomer subunit assembly is independent of the variations about the loop regions. The variations in the loop regions, coupled with flexibility in the monomer assembly, lead to a complex flexibility in the dimer of the TGF-beta superfamily. For the TGF-beta superfamily, the cystine knot acts as a scaffold and complex flexibility provides for biological selectivity. Complex flexibility might provide an explanation for the diverse range of biological activities that these important molecules display.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study was undertaken to define the 5' and 3' regulatory sequences of human von Willebrand factor gene that confer tissue-specific expression in vivo. Transgenic mice were generated bearing a chimeric construct that included 487 bp of 5' flanking sequence and the first exon fused in-frame to the Escherichia coli lacZ gene. In situ histochemical analyses in independent lines demonstrated that the von Willebrand factor promoter targeted expression of LacZ to a subpopulation of endothelial cells in the yolk sac and adult brain. LacZ activity was absent in the vascular beds of the spleen, lung, liver, kidney, testes, heart, and aorta, as well as in megakaryocytes. In contrast, in mice containing the lacZ gene targeted to the thrombomodulin locus, the 5-bromo-4-chloro-3-indolyl beta-D-galactopyranoside reaction product was detected throughout the vascular tree. These data highlight the existence of regional differences in endothelial cell gene regulation and suggest that the 733-bp von Willebrand factor promoter may be useful as a molecular marker to investigate endothelial cell diversity.