31 resultados para Eutectic Modification
Resumo:
Helicobacter pylori is a Gram-negative bacterial pathogen with a small genome of 1.64–1.67 Mb. More than 20 putative DNA restriction-modification (R-M) systems, comprising more than 4% of the total genome, have been identified in the two completely sequenced H. pylori strains, 26695 and J99, based on sequence similarities. In this study, we have investigated the biochemical activities of 14 Type II R-M systems in H. pylori 26695. Less than 30% of the Type II R-M systems in 26695 are fully functional, similar to the results obtained from strain J99. Although nearly 90% of the R-M genes are shared by the two H. pylori strains, different sets of these R-M genes are functionally active in each strain. Interestingly, all strain-specific R-M genes are active, whereas most shared genes are inactive. This agrees with the notion that strain-specific genes have been acquired more recently through horizontal transfer from other bacteria and selected for function. Thus, they are less likely to be impaired by random mutations. Our results also show that H. pylori has extremely diversified R-M systems in different strains, and that the diversity may be maintained by constantly acquiring new R-M systems and by inactivating and deleting the old ones.
Resumo:
Wild-type Arabidopsis plants, the starch-deficient mutant TL46, and the near-starchless mutant TL25 were evaluated by noninvasive in situ methods for their capacity for net CO2 assimilation, true rates of photosynthetic O2 evolution (determined from chlorophyll fluorescence measurements of photosystem II), partitioning of photosynthate into sucrose and starch, and plant growth. Compared with wild-type plants, the starch mutants showed reduced photosynthetic capacity, with the largest reduction occurring in mutant TL25 subjected to high light and increased CO2 partial pressure. The extent of stimulation of CO2 assimilation by increasing CO2 or by reducing O2 partial pressure was significantly less for the starch mutants than for wild-type plants. Under high light and moderate to high levels of CO2, the rates of CO2 assimilation and O2 evolution and the percentage inhibition of photosynthesis by low O2 were higher for the wild type than for the mutants. The relative rates of 14CO2 incorporation into starch under high light and high CO2 followed the patterns of photosynthetic capacity, with TL46 showing 31% to 40% of the starch-labeling rates of the wild type and TL25 showing less than 14% incorporation. Overall, there were significant correlations between the rates of starch synthesis and CO2 assimilation and between the rates of starch synthesis and cumulative leaf area. These results indicate that leaf starch plays an important role as a transient reserve, the synthesis of which can ameliorate any potential reduction in photosynthesis caused by feedback regulation.
Resumo:
Vsx-1 is a paired-like:CVC homeobox gene whose expression is linked to bipolar cell differentiation during zebrafish retinogenesis. We used a yeast two-hybrid screen to identify proteins interacting with Vsx-1 and isolated Ubc9, an enzyme that conjugates the small ubiquitin-like modifier SUMO-1. Despite its interaction with Ubc9, we show that Vsx-1 is not a substrate for SUMO-1 in COS-7 cells or in vitro. When a yeast two-hybrid assay is used, deletion analysis of the interacting domain on Vsx-1 shows that Ubc9 binds to a nuclear localization signal (NLS) at the NH2 terminus of the homeodomain. In SW13 cells, Vsx-1 localizes to the nucleus and is excluded from nucleoli. Deletion of the NLS disrupts this nuclear localization, resulting in a diffuse cytoplasmic distribution of Vsx-1. In SW13 AK1 cells that express low levels of endogenous Ubc9, Vsx-1 accumulates in a perinuclear ring and colocalizes with an endoplasmic reticulum marker. However, NLS-tagged STAT1 protein exhibits normal nuclear localization in both SW13 and SW13 AK1 cells, suggesting that nuclear import is not globally disrupted. Cotransfection of Vsx-1 with Ubc9 restores Vsx-1 nuclear localization in SW3 AK1 cells and demonstrates that Ubc9 is required for the nuclear localization of Vsx-1. Ubc9 continues to restore nuclear localization even after a C93S active site mutation has eliminated its SUMO-1-conjugating ability. These results suggest that Ubc9 mediates the nuclear localization of Vsx-1, and possibly other proteins, through a nonenzymatic mechanism that is independent of SUMO-1 conjugation.
Phosphoglycerylethanolamine Posttranslational Modification of Plant Eukaryotic Elongation Factor 1α1
Resumo:
Eukaryotic elongation factor 1α (eEF-1A) is a multifunctional protein. There are three known posttranslational modifications of eEF-1A that could potentially affect its function. Except for phosphorylation, the other posttranslational modifications have not been demonstrated in plants. Using matrix-assisted laser desorption/ionization-mass spectrometry and peptide mass mapping, we show that carrot (Daucus carota L.) eEF-1A contains a phosphoglycerylethanolamine (PGE) posttranslational modification. eEF-1A was the only protein labeled with [14C]ethanolamine in carrot cells and was the predominant ethanolamine-labeled protein in Arabidopsis seedlings and tobacco (Nicotiana tabacum L.) cell cultures. In vivo-labeling studies using [3H]glycerol, [32P]Pi, [14C]myristic acid, and [14C]linoleic acid indicated that the entire phospholipid phosphatidylethanolamine is covalently attached to the protein. The PGE lipid modification did not affect the partitioning of eEF-1A in Triton X-114 or its actin-binding activity in in vitro assays. Our in vitro data indicate that this newly characterized posttranslational modification alone does not affect the function of eEF-1A. Therefore, the PGE lipid modification may work in combination with other posttranslational modifications to affect the distribution and the function of eEF-1A within the cell.
Resumo:
During meiosis II in the yeast Saccharomyces cerevisiae, the cytoplasmic face of the spindle pole body changes from a site of microtubule initiation to a site of de novo membrane formation. These membranes are required to package the haploid meiotic products into spores. This functional change in the spindle pole body involves the expansion and modification of its cytoplasmic face, termed the outer plaque. We report here that SPO21 is required for this modification. The Spo21 protein localizes to the spindle pole in meiotic cells. In the absence of SPO21 the structure of the outer plaque is abnormal, and prospore membranes do not form. Further, decreased dosage of SPO21 leaves only two of the four spindle pole bodies competent to generate membranes. Mutation of CNM67, encoding a known component of the mitotic outer plaque, also results in a meiotic outer plaque defect but does not block membrane formation, suggesting that Spo21p may play a direct role in initiating membrane formation.
Resumo:
Damage to actively transcribed DNA is preferentially repaired by the transcription-coupled repair (TCR) system. TCR requires RNA polymerase II (Pol II), but the mechanism by which repair enzymes preferentially recognize and repair DNA lesions on Pol II-transcribed genes is incompletely understood. Herein we demonstrate that a fraction of the large subunit of Pol II (Pol II LS) is ubiquitinated after exposing cells to UV-radiation or cisplatin but not several other DNA damaging agents. This novel covalent modification of Pol II LS occurs within 15 min of exposing cells to UV-radiation and persists for about 8-12 hr. Ubiquitinated Pol II LS is also phosphorylated on the C-terminal domain. UV-induced ubiquitination of Pol II LS is deficient in fibroblasts from individuals with two forms of Cockayne syndrome (CS-A and CS-B), a rare disorder in which TCR is disrupted. UV-induced ubiquitination of Pol II LS can be restored by introducing cDNA constructs encoding the CSA or CSB genes, respectively, into CS-A or CS-B fibroblasts. These results suggest that ubiquitination of Pol II LS plays a role in the recognition and/or repair of damage to actively transcribed genes. Alternatively, these findings may reflect a role played by the CSA and CSB gene products in transcription.
Resumo:
To study the cleavage mechanism of bacterial Nase P RNA, we have synthesized precursor tRNA substrates carrying a single Rp- or Sp-phosphorothioate modification at the RNase P cleavage site. Both the Sp- and the Rp-diastereomer reduced the rate of processing by Escherichia coli RNase P RNA at least 1000-fold under conditions where the chemical step is rate-limiting. The Rp-modification had no effect and the Sp-modification had a moderate effect on precursor tRNA ground state binding to RNase P RNA. Processing of the Rp-diastereomeric substrate was largely restored in the presence of the "thiophilic" Cd2+ as the only divalent metal ion, demonstrating direct metal ion coordination to the (pro)-Rp substituent at the cleavage site and arguing against a specific role for Mg(2+)-ions at the pro-Sp oxygen. For the Rp-diastereomeric substrate, Hill plot analysis revealed a cooperative dependence upon [Cd2+] of nH = 1.8, consistent with a two-metal ion mechanism. In the presence of the Sp-modification, neither Mn2+ nor Cd2+ was able to restore detectable cleavage at the canonical site. Instead, the ribozyme promotes cleavage at the neighboring unmodified phosphodiester with low efficiency. Dramatic inhibition of the chemical step by both the Rp- and Sp-phosphorothioate modification is unprecedented among known ribozymes and points to unique features of transition state geometry in the RNase P RNA-catalyzed reaction.
Resumo:
Antioxidants may play an important role in preventing free radical damage associated with aging by interfering directly in the generation of radicals or by scavenging them. We investigated the effects of a high vitamin E and/or a high beta-carotene diet on aging of the anion transporter, band 3, in lymphocytes and brain. The band 3 proteins function as anion transporters, acid base regulators, C02 transporters, and structural proteins that provide a framework for membrane lipids and that link the plasma membrane to the cytoskeleton. Senescent cell antigen (SCA), which terminates the life of cells, is a degradation product of band 3. This study was conducted as a double-blind study in which eight groups of middle-aged or old mice received either high levels of beta-carotene and/or vitamin E or standard levels of these supplements in their diets. Anion transport kinetic assays were performed on isolated splenic lymphocytes. Immunoreactivity of an antibody that recognizes aging changes in old band 3 preceding generation of SCA was used to quantitate aged band 3 in brain tissue. Results indicate that vitamin E prevented the observed age-related decline in anion transport by lymphocytes and the generation of aged band 3 leading to SCA formation. beta-Carotene had no significant effect on the results of either assay. Since increased aged band 3 and decreased anion transport are initial steps in band 3 aging, which culminates in the generation of SCA and cellular removal, vitamin E prevents or delays aging of band 3-related proteins in lymphocytes and brain.
Resumo:
Restriction-modification (RM) systems are believed to have evolved to protect cells from foreign DNA. However, this hypothesis may not be sufficient to explain the diversity and specificity in sequence recognition, as well as other properties, of these systems. We report that the EcoRI restriction endonuclease-modification methylase (rm) gene pair stabilizes plasmids that carry it and that this stabilization is blocked by an RM of the same sequence specificity (EcoRI or its isoschizomer, Rsr I) but not by an RM of a different specificity (PaeR7I) on another plasmid. The PaeR7I rm likewise stabilizes plasmids, unless an rm gene pair with identical sequence specificity is present. Our analysis supports the following model for stabilization and incompatibility: the descendants of cells that have lost an rm gene pair expose the recognition sites in their chromosomes to lethal attack by any remaining restriction enzymes unless modification by another RM system of the same specificity protects these sites. Competition for specific sequences among these selfish genes may have generated the great diversity and specificity in sequence recognition among RM systems. Such altruistic suicide strategies, similar to those found in virus-infected cells, may have allowed selfish RM systems to spread by effectively competing with other selfish genes.
Resumo:
The plant acyl-acyl carrier protein (ACP) thioesterases (TEs) are of biochemical interest because of their roles in fatty acid synthesis and their utilities in the bioengineering of plant seed oils. When the FatB1 cDNA encoding a 12:0-ACP TE (Uc FatB1) from California bay, Umbellularia californica (Uc) was expressed in Escherichia coli and in developing oilseeds of the plants Arabidopsis thaliana and Brassica napus, large amounts of laurate (12:0) and small amounts of myristate (14:0) were accumulated. We have isolated a TE cDNA from camphor (Cinnamomum camphorum) (Cc) seeds that shares 92% amino acid identity with Uc FatB1. This TE, Cc FatB1, mainly hydrolyzes 14:0-ACP as shown by E. coli expression. We have investigated the roles of the N- and C-terminal regions in determining substrate specificity by constructing two chimeric enzymes, in which the N-terminal portion of one protein is fused to the C-terminal portion of the other. Our results show that the C-terminal two-thirds of the protein is critical for the specificity. By site-directed mutagenesis, we have replaced several amino acids in Uc FatB1 by using the Cc FatB1 sequence as a guide. A double mutant, which changes Met-197 to an Arg and Arg-199 to a His (M197R/R199H), turns Uc FatB1 into a 12:0/14:0 TE with equal preference for both substrates. Another mutation, T231K, by itself does not effect the specificity. However, when it is combined with the double mutant to generate a triple mutant (M197R/R199H/T231K), Uc FatB1 is converted to a 14:0-ACP TE. Expression of the double-mutant cDNA in E. coli K27, a strain deficient in fatty acid degradation, results in accumulation of similar amounts of 12:0 and 14:0. Meanwhile the E. coli expressing the triple-mutant cDNA produces predominantly 14:0 with very small amounts of 12:0. Kinetic studies indicate that both wild-type Uc FatB1 and the triple mutant have similar values of Km,app with respect to 14:0-ACP. Inhibitory studies also show that 12:0-ACP is a good competitive inhibitor with respect to 14:0-ACP in both the wild type and the triple mutant. These results imply that both 12:0- and 14:0-ACP can bind to the two proteins equally well, but in the case of the triple mutant, the hydrolysis of 12:0-ACP is severely impaired. The ability to modify TE specificity should allow the production of additional "designer oils" in genetically engineered plants.
Resumo:
The effects of the rotational information of DNA in determining the in vitro localization of nucleosomal core particles (ncps) have been studied in the Saccharomyces cerevisiae 5S rRNA repeat gene. We have altered the distribution of the phased series of flexibility signals present on this DNA by inserting a 25-bp tract, and we have analyzed the effects of this mutation on the distribution and on the frequencies of ncps, as compared with the wild type and a reference 21-bp insertion mutant. The variation of the standard free energy of nucleosome reconstitution was determined. The results show that the DNA rotational information is a major determinant of ncps positioning, define how many rotationally phased signals are required for the formation of a stable particle, and teach how to modify their distribution through the alteration of the rotational signals.
Resumo:
We have developed a modified rhodamine (Rho) staining procedure to study uptake and efflux in murine hematopoietic stem cells. Distinct populations of Rho++ (bright), Rho+ (dull), and Rho- (negative) cells could be discriminated. Sorted Rho- cells were subjected to a second Rho staining procedure with the P-glycoprotein blocking agent verapamil (VP). Most cells became Rho positive [Rho-/Rho(VP)+ cells] and some remained Rho negative [Rho-/Rho(VP)- cells]. These cell fractions were characterized by their marrow-repopulating ability in a syngeneic, sex-mismatch transplantation model. Short-term repopulating ability was determined by recipient survival for at least 6 weeks after lethal irradiation and transplantation--i.e., radioprotection. Long-term repopulating ability at 6 months after transplantation was measured by fluorescence in situ hybridization with a Y-chromosome-specific probe, by graft function and recipient survival. Marrow-repopulating cells were mainly present in the small Rho- cell fraction. Transplantation of 30 Rho- cells resulted in 50% radioprotection and > 80% donor repopulation in marrow, spleen, and thymus 6 months after transplantation. Cotransplantation of cells from both fractions in individual mice directly showed that within this Rho- cell fraction, the Rho-/Rho(VP)+ cells exhibited mainly short-term and the Rho-/Rho(VP)- cells exhibited mainly long-term repopulating ability. Our results indicate that hematopoietic stem cells have relatively high P-glycoprotein expression and that the cells responsible for long-term repopulating ability can be separated from cells exhibiting short-term repopulating ability, probably by a reduced mitochondrial Rho-binding capacity.
Resumo:
Ciliary neurotrophic factor, oncostatin M, leukemia-inhibitory factor, and interleukin 6 are related cytokines that initiate signaling by homodimerizing the signal-transducing receptor component gp130 or by heterodimerizing gp130 with a gp130-related receptor component. Receptor dimerization in turn activates receptor-associated kinases of the Jak/Tyk family, resulting in the rapid tyrosine phosphorylation of several intracellular proteins, including those of two members of the signal transducers and activators of transcription (STAT) family--STAT1 and STAT3. Here we show that all cytokines that utilize gp130 sequentially induce two distinct forms of STAT3 in all responding cells examined, with the two forms apparently differing because of a time-dependent secondary serine/threonine phosphorylation involving an H7-sensitive kinase. While both STAT3 forms bind DNA and translocate to the nucleus, the striking time-dependent progression from one form to the other implies other important functional differences between the two forms. Granulocyte colony-stimulating factor, which utilizes a receptor highly related to gp130, also induces these two forms of STAT3. In contrast to a number of other cytokines and growth factors, all cytokines using gp130 and related signal transducers consistently and preferentially induce the two forms of STAT3 as compared with STAT1; this characteristic STAT activation pattern is seen regardless of which Jak/Tyk kinases are used in a particular response, consistent with the notion that the receptor components themselves are the primary determinants of which STATs are activated.
Resumo:
During T-cell activation, Ser59 in the unique N-terminal region of p56lck is phosphorylated. Mutation of Ser59 to Glu59 mimics Ser59 phosphorylation, and upon CD4 crosslinking, this mutant p56lck induces tyrosine phosphorylation of intracellular proteins distinct from those induced by wild-type p56lck. Mutant and wild-type p56lck have similar affinities for CD4 and similar kinase activities. In glutathione S-transferase fusion proteins, the p56lck Src homology 2 (SH2) domain with the SH3 domain and the unique N-terminal region (including Ser59) has a different binding specificity for phosphotyrosyl proteins than the SH2 domain alone. Either deletion of the unique N-terminal region or mutation of Ser59 to Glu59 in the fusion protein reverts the phosphotyrosyl protein binding specificity back to that of the SH2 domain alone. These results suggest that phosphorylation of Ser59 regulates the function of p56lck by controlling binding specificity of its SH2 domain.