26 resultados para Essai de complémentation de fragments protéiques (PCA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human apolipoprotein (apo) E4, a major risk factor for Alzheimer's disease (AD), occurs in amyloid plaques and neurofibrillary tangles (NFTs) in AD brains; however, its role in the pathogenesis of these lesions is unclear. Here we demonstrate that carboxyl-terminal-truncated forms of apoE, which occur in AD brains and cultured neurons, induce intracellular NFT-like inclusions in neurons. These cytosolic inclusions were composed of phosphorylated tau, phosphorylated neurofilaments of high molecular weight, and truncated apoE. Truncated apoE4, especially apoE4(Δ272–299), induced inclusions in up to 75% of transfected neuronal cells, but not in transfected nonneuronal cells. ApoE4 was more susceptible to truncation than apoE3 and resulted in much greater intracellular inclusion formation. These results suggest that apoE4 preferentially undergoes intracellular processing, creating a bioactive fragment that interacts with cytoskeletal components and induces NFT-like inclusions containing phosphorylated tau and phosphorylated neurofilaments of high molecular weight in neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteasomes are involved in the proteolytic generation of major histocompatibility complex (MHC) class I epitopes but their exact role has not been elucidated. We used highly purified murine 20S proteasomes for digestion of synthetic 22-mer and 41/44-mer ovalbumin partial sequences encompassing either an immunodominant or a marginally immunogenic epitope. At various times, digests were analyzed by pool sequencing and by semiquantitative electrospray ionization mass spectrometry. Most dual cleavage fragments derived from 22-mer peptides were 7-10 amino acids long, with octa- and nonamers predominating. Digestion of 41/44-mer peptides initially revealed major cleavage sites spaced by two size ranges, 8 or 9 amino acids and 14 or 15 amino acids, followed by further degradation of the latter as well as of larger single cleavage fragments. The final size distribution was slightly broader than that of fragments derived from 22-mer peptides. The majority of peptide bonds were cleaved, albeit with vastly different efficiencies. This resulted in multiple overlapping proteolytic fragments including a limited number of abundant peptides. The immunodominant epitope was generated abundantly whereas only small amounts of the marginally immunogenic epitope were detected. The frequency distributions of amino acids flanking proteasomal cleavage sites are correlated to that reported for corresponding positions of MHC class I binding peptides. The results suggest that proteasomal degradation products may include fragments with structural properties similar to MHC class I binding peptides. Proteasomes may thus be involved in the final stages of proteolytic epitope generation, often without the need for downstream proteolytic events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed an approach to study changes in gene expression by selective PCR amplification and display of 3' end restriction fragments of double-stranded cDNAs. This method produces highly consistent and reproducible patterns, can detect almost all mRNAs in a sample, and can resolve hidden differences such as bands that differ in their sequence but comigrate on a gel. Bands corresponding to known cDNAs move to predictable positions on the gel, making this a powerful approach to correlate gel patterns with cDNA data bases. Applying this method, we have examined differences in gene expression patterns during T-cell activation. Of a total of 700 bands that were evaluated in this study, as many as 3-4% represented mRNAs that are upregulated, while approximately 2% were down-regulated within 4 hr of activation of Jurkat T cells. These and other results suggest that this approach is suitable for the systematic, expeditious, and nearly exhaustive elucidation of subtle changes in the patterns of gene expression in cells with altered physiologic states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An assay that allows measurement of absolute induction frequencies for DNA double-strand breaks (dsbs) in defined regions of the genome and that quantitates rejoining of correct DNA ends has been used to study repair of dsbs in normal human fibroblasts after x-irradiation. The approach involves hybridization of single-copy DNA probes to Not I restriction fragments separated according to size by pulsed-field gel electrophoresis. Induction of dsbs is quantitated from the decrease in the intensity of the hybridizing restriction fragment and an accumulation of a smear below the band. Rejoining of dsbs results in reconstitution of the intact restriction fragment only if correct DNA ends are joined. By comparing results from this technique with results from a conventional electrophoresis assay that detects all rejoining events, it is possible to quantitate the misrejoining frequency. Three Not I fragments on the long arm of chromosome 21 were investigated with regard to dsb induction, yielding an identical induction rate of 5.8 X 10(-3) break per megabase pair per Gy. Correct dsb rejoining was measured for two of these Not I fragments after initial doses of 80 and 160 Gy. The misrejoining frequency was about 25% for both fragments and was independent of dose. This result appears to be representative for the whole genome as shown by analysis of the entire Not I fragment distribution. The correct rejoining events primarily occurred within the first 2 h, while the misrejoining kinetics included a much slower component, with about half of the events occurring between 2 and 24 h. These misrejoining kinetics are similar to those previously reported for production of exchange aberrations in interphase chromosomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beckwith-Wiedemann syndrome (BWS) involves fetal overgrowth and predisposition to a wide variety of embryonal tumors of childhood. We have previously found that BWS is genetically linked to 11p15 and that this same band shows loss of heterozygosity in the types of tumors to which children with BWS are susceptible. However, 11p15 contains > 20 megabases, and therefore, the BWS and tumor suppressor genes could be distinct. To determine the precise physical relationship between these loci, we isolated yeast artificial chromosomes, and cosmid libraries from them, within the region of loss of heterozygosity in embryonal tumors. Five germ-line balanced chromosomal rearrangement breakpoint sites from BWS patients, as well as a balanced chromosomal translocation breakpoint from a rhabdoid tumor, were isolated within a 295- to 320-kb cluster defined by a complete cosmid contig crossing these breakpoints. This breakpoint cluster terminated approximately 100 kb centromeric to the imprinted gene IGF2 and 100 kb telomeric to p57KIP2, an inhibitor of cyclin-dependent kinases, and was located within subchromosomal transferable fragments that suppressed the growth of embryonal tumor cells in genetic complementation experiments. We have identified 11 transcribed sequences in this BWS/tumor suppressor coincident region, one of which corresponded to p57KIP2. However, three additional BWS breakpoints were > 4 megabases centromeric to the other five breakpoints and were excluded from the tumor suppressor region defined by subchromosomal transferable fragments. Thus, multiple genetic loci define BWS and tumor suppression on 11p15.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All of the DNA cleavage and strand transfer events required for transposition of insertion sequence IS10 are carried out by a 46-kDa IS10-encoded transposase protein. Limited proteolysis demonstrates that transposase has two principal structural domains, a 28-kDa N-terminal domain (N alpha beta; aa 1-246) and a 17-kDa C-terminal domain (C; aa 256-402). The two domains are connected by a 1-kDa proteolytic-sensitive linker region (aa 247-255). The N-terminal domain N alpha beta can be further subdivided into domains N alpha and N beta by a weaker protease-sensitive site located 6 kDa (53 aa) from the N terminus. The N beta and N alpha beta fragments are capable of nonspecific DNA binding as determined by Southwestern blot analysis. None of the fragments alone is capable of carrying out the first step of transposition, assembly of a synaptic complex containing a pair of transposon ends. Remarkably, complete transposition activity can be reconstituted by mixing fragment N alpha beta and fragment C, with or without the intervening linker region. We infer that the structural integrity of transposase during the transitions involved in the chemical steps of the transposition reaction is maintained independent of the linker, presumably by direct contacts between and among the principal domains. Reconstitution of activity in the absence of the linker region is puzzling, however, because mutations that block strand transfer or affect insertion specificity alter linker region residues. Additional reconstitution experiments demonstrate that the N alpha region is dispensable for formation of a synaptic complex but is required for complexes to undergo cleavage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To classify Listeria monocytogenes using taxonomic characters derived from the rRNA operons and their flanking sequences, we studied a sample of 1346 strains within the taxon. DNA from each strain was digested with a restriction endonuclease, EcoRI. The fragments were separated by gel electrophoresis, immobilized on a membrane, and hybridized with a labeled rRNA operon from Escherichia coli. The pattern of bands, positions, and intensities of hybridized fragments were electronically captured. Software was used to normalize the band positions relative to standards, scale the signal intensity, and reduce the background so that each strain was reproducibly represented in a data base as a pattern. With these methods, L. monocytogenes was resolved into 50 pattern types differing in the length of at least one polymorphic fragment. Pattern types representing multiple strains were recorded as the mathematical average of the strain patterns. Pattern types were arranged by size polymorphisms of assigned rRNA regions into subsets, which revealed the branching genetic structure of the species. Subtracting the polymorphic variants of a specific assigned region from the pattern types and averaging the types within each subset resulted in reduced sets of conserved fragments that could be used to recognize strains of the species. Pattern types and reduced sets of conserved fragments were conserved among different strains of L. monocytogenes but were not observed in total among strains of other species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oligogalacturonides are plant cell wall-derived regulatory molecules which stimulate defense gene expression during pathogenesis. In vitro, these compounds enhance the phosphorylation of an approximately 34-kDa protein (pp34) in purified plasma membranes from potato and tomato leaves. We now show that polygalacturonate-enhanced phosphorylation of pp34 occurs in plasma membranes purified from tomato roots, hypocotyls, and stems and from undifferentiated potato cells. Furthermore, a similar phosphorylation is detected in leaf plasma membranes from soybean, a plant distantly related to tomato. Purified oligogalacturonides 13 to at least 26 residues long stimulate pp34 thiophosphorylation in vitro. This stimulation pattern differs from the induction of many known defense responses in vivo, where a narrower range of smaller fragments, between approximately 10 and 15 residues long, are active. On the basis of these differences we suggest that observed effects of applied exogenous oligogalacturonides on defense responses may not necessarily reflect the situation during pathogenesis. The cell wall could act as a barrier to many exogenous oligo- and polygalacturonides as well as other large regulatory ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a procedure for preferential isolation of DNA fragments with G+C-rich portions. Such fragments occur in known genes within or adjacent to CpG islands. Since about 56% of human genes are associated with CpG islands, isolation of these fragments permits detection and probing of many genes within much larger segments of DNA, such as cosmids or yeast artificial chromosomes, which have not been sequenced. Cloned DNA fragments digested with four restriction endonucleases were subjected to denaturing gradient gel electrophoresis. Long G+C-rich sections in fragments inhibit strand dissociation after the fragments reach retardation level in the gradient; such fragments are retained in the gel after most others disappear. Nucleotide sequences of the retained fragments show that about half of these fragments appear to be derived from CpG islands. Northern analysis indicated the presence of RNA complementary to most of the retained fragments. A heuristic approach to the relation between base sequence and the kinetics of strand dissociation of partly melted molecules appears to account for retention and nonretention. The expectation that CpG island fragments will be enriched among fragments retained in a denaturing gradient is supported by rate estimates based on melting theory applied to known sequences. This method, designated SPM for segregation of partly melted molecules, is expected to provide a means for convenient and efficient isolation of genes from unsequenced DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Escherichia coli rpoB gene, which codes for the 1342-residue beta subunit of RNA polymerase (RNAP), contains two dispensable regions centered around codons 300 and 1000. To test whether these regions demarcate domains of the RNAP beta subunit, fragments encoded by segments of rpoB flanking the dispensable regions were individually overexpressed and purified. We show that these beta-subunit polypeptide fragments, when added with purified recombinant beta', sigma, and alpha subunits of RNAP, reconstitute a functional enzyme in vitro. These results demonstrate that the beta subunit is composed of at least three distinct domains and open another avenue for in vitro studies of RNAP assembly and structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhodopsin folding and assembly were investigated by expression of five bovine opsin gene fragments separated at points corresponding to proteolytic cleavage sites in the second or third cytoplasmic regions. The CH(1-146) and CH(147-348) gene fragments encode amino acids 1-146 and 147-348 of opsin, while the TH(1-240) and TH(241-348) gene fragments encode amino acids 1-240 and 241-348, respectively. Another gene fragment, CT(147-240), encodes amino acids 147-240. All five opsin polypeptide fragments were stably produced upon expression of the corresponding gene fragments in COS-1 cells. The singly expressed polypeptide fragments failed to form a chromophore with 11-cis-retinal, whereas coexpression of two or three complementary fragments [CH(1-146) + CH(147-348), TH(1-240) + TH(241-348), or CH(1-146) + CT(147-240) + TH(241-348)] formed pigments with spectral properties similar to wild-type rhodopsin. The NH2-terminal polypeptide in these rhodopsins showed a glycosylation pattern characteristic of wild-type COS-1 cell rhodopsin and was noncovalently associated with its complementary fragment(s). Further, the CH(1-146) + CH(147-348) rhodopsin showed substantial light-dependent activation of transducin. We conclude that the functional assembly of rhodopsin is mediated by the association of at least three protein-folding domains.