107 resultados para Epstein-Barr virus induced gene 3"
Resumo:
We report the isolation of 15 Neurospora crassa mutants defective in “quelling” or transgene-induced gene silencing. These quelling-defective mutants (qde) belonging to three complementation groups have provided insights into the mechanism of posttranscriptional gene silencing in N. crassa. The recessive nature of the qde mutations indicates that the encoded gene products act in trans. We show that when qde genes are mutated in a transgenic-induced silenced strain containing many copies of the transgene, the expression of the endogenous gene is maintained despite the presence of transgene sense RNA, the molecule proposed to trigger quelling. Moreover, the qde mutants failed to show quelling when tested with another gene, suggesting that they may be universally defective in transgene-induced gene silencing. As such, qde genes may be involved in sensing aberrant sense RNA and/or targeting/degrading the native mRNA. The qde mutations may be used to isolate the genes encoding the first components of the quelling mechanism. Moreover, these quelling mutants may be important in applied and basic research for the creation of strains able to overexpress a transgene.
Resumo:
Gene silencing is an important but little understood regulatory mechanism in plants. Here we report that a viral sequence, initially identified as a mediator of synergistic viral disease, acts to suppress the establishment of both transgene-induced and virus-induced posttranscriptional gene silencing. The viral suppressor of silencing comprises the 5′-proximal region of the tobacco etch potyviral genomic RNA encoding P1, helper component-proteinase (HC-Pro) and a small part of P3, and is termed the P1/HC-Pro sequence. A reversal of silencing assay was used to assess the effect of the P1/HC-Pro sequence on transgenic tobacco plants (line T4) that are posttranscriptionally silenced for the uidA reporter gene. Silencing was lifted in offspring of T4 crosses with four independent transgenic lines expressing P1/HC-Pro, but not in offspring of control crosses. Viral vectors were used to assess the effect of P1/HC-Pro expression on virus-induced gene silencing (VIGS). The ability of a potato virus X vector expressing green fluorescent protein to induce silencing of a green fluorescent protein transgene was eliminated or greatly reduced when P1/HC-Pro was expressed from the same vector or from coinfecting potato virus X vectors. Expression of the HC-Pro coding sequence alone was sufficient to suppress virus-induced gene silencing, and the HC-Pro protein product was required for the suppression. This discovery points to the role of gene silencing as a natural antiviral defense system in plants and offers different approaches to elucidate the molecular basis of gene silencing.
Resumo:
The antipsychotic drug, haloperidol, elicits the expression of neurotensin and c-fos mRNA in the dorsal lateral region of the striatum and produces an acute cataleptic response in rodents that correlates with the motor side effects of haloperidol in humans. Mice harboring a targeted disruption of the RIIβ subunit of protein kinase A have a profound deficit in cAMP-stimulated kinase activity in the striatum. When treated with haloperidol, RIIβ mutant mice fail to induce either c-fos or neurotensin mRNA and the acute cataleptic response is blocked. However, both wild-type and mutant mice become cataleptic when neurotensin peptide is directly injected into the lateral ventricle, demonstrating that the kinase deficiency does not interfere with the action of neurotensin but rather its synthesis and release. These results establish a direct role for protein kinase A as a mediator of haloperidol induced gene induction and cataleptic behavior.
Resumo:
Hypoxia is important in both biomedical and environmental contexts and necessitates rapid adaptive changes in metabolic organization. Mammals, as air breathers, have a limited capacity to withstand sustained exposure to hypoxia. By contrast, some aquatic animals, such as certain fishes, are routinely exposed and resistant to severe environmental hypoxia. Understanding the changes in gene expression in fishes exposed to hypoxic stress could reveal novel mechanisms of tolerance that may shed new light on hypoxia and ischemia in higher vertebrates. Using cDNA microarrays, we have studied gene expression in a hypoxia-tolerant burrow-dwelling goby fish, Gillichthys mirabilis. We show that a coherent picture of a complex transcriptional response can be generated for a nonmodel organism for which sequence data were unavailable. We demonstrate that: (i) although certain shifts in gene expression mirror changes in mammals, novel genes are differentially expressed in fish; and (ii) tissue-specific patterns of expression reflect the different metabolic roles of tissues during hypoxia.
Resumo:
Using the representation difference analysis technique, we have identified a novel gene, Ian4, which is preferentially expressed in hematopoietic precursor 32D cells transfected with wild-type versus mutant forms of the Bcr/Abl oncogene. Ian4 expression was undetectable in 32D cells transfected with v-src, oncogenic Ha-ras or v-Abl. Murine Ian4 maps to chromosome 6, 25 cM from the centromere. The Ian4 mRNA contains two open reading frames (ORFs) separated by 5 nt. The first ORF has the potential to encode for a polypeptide of 67 amino acids without apparent homology to known proteins. The second ORF encodes a protein of 301 amino acids with a GTP/ATP-binding site in the N-terminus and a hydrophobic domain in the extreme C-terminus. The IAN-4 protein resides in the mitochondrial outer membrane and the last 20 amino acids are necessary for this localization. The IAN-4 protein has GTP-binding activity and shares sequence homology with a novel family of putative GTP-binding proteins: the immuno-associated nucleotide (IAN) family.
Resumo:
The influenza A virus pandemic of 1918–1919 resulted in an estimated 20–40 million deaths worldwide. The hemagglutinin and neuraminidase sequences of the 1918 virus were previously determined. We here report the sequence of the A/Brevig Mission/1/18 (H1N1) virus nonstructural (NS) segment encoding two proteins, NS1 and nuclear export protein. Phylogenetically, these genes appear to be close to the common ancestor of subsequent human and classical swine strain NS genes. Recently, the influenza A virus NS1 protein was shown to be a type I IFN antagonist that plays an important role in viral pathogenesis. By using the recently developed technique of generating influenza A viruses entirely from cloned cDNAs, the hypothesis that the 1918 virus NS1 gene played a role in virulence was tested in a mouse model. In a BSL3+ laboratory, viruses were generated that possessed either the 1918 NS1 gene alone or the entire 1918 NS segment in a background of influenza A/WSN/33 (H1N1), a mouse-adapted virus derived from a human influenza strain first isolated in 1933. These 1918 NS viruses replicated well in tissue culture but were attenuated in mice as compared with the isogenic control viruses. This attenuation in mice may be related to the human origin of the 1918 NS1 gene. These results suggest that interaction of the NS1 protein with host-cell factors plays a significant role in viral pathogenesis.
Resumo:
Transformation of normal cloned rat embryo fibroblast (CREF) cells with cellular oncogenes results in acquisition of anchorage-independent growth and oncogenic potential in nude mice. These cellular changes correlate with an induction in the expression of a cancer progression-promoting gene, progression elevated gene-3 (PEG-3). To define the mechanism of activation of PEG-3 as a function of transformation by the Ha-ras and v-raf oncogenes, evaluations of the signaling and transcriptional regulation of the ~2.0 kb promoter region of the PEG-3 gene, PEG-Prom, was undertaken. The full-length and various mutated regions of the PEG-Prom were linked to a luciferase reporter construct and tested for promoter activity in CREF and oncogene-transformed CREF cells. An analysis was also performed using CREF cells doubly transformed with Ha-ras and the Ha-ras specific suppressor gene Krev-1, which inhibits the transformed phenotype in vitro. These assays document an association between expression of the transcription regulator PEA3 and PEG-3. The levels of PEA3 and PEG-3 RNA and proteins are elevated in the oncogenically transformed CREF cells, and reduced in transformation and tumorigenic suppressed Ha-ras/Krev-1 doubly transformed CREF cells. Enhanced tumorigenic behavior, PEG-3 promoter function and PEG-3 expression in Ha-ras transformed cells were all dependent upon increased activity within the mitogen-activated protein kinase (MAPK) pathway. Electrophoretic mobility shift assays and DNase I footprinting experiments indicate that PEA3 binds to sites within the PEG-Prom in transformed rodent cells in an area adjacent to the TATA box in a MAPK-dependent fashion. These findings demonstrate an association between Ha-ras and v-raf transformation of CREF cells with elevated PEA3 and PEG-3 expression, and they implicate MAPK signaling via PEA3 as a signaling cascade involved in activation of the PEG-Prom.
Resumo:
A tomato gene that is induced early after infection of tomato (Lycopersicon esculentum Mill.) with root-knot nematodes (Meloidogyne javanica) encodes a protein with 54% amino acid identity to miraculin, a flavorless protein that causes sour substances to be perceived as sweet. This gene was therefore named LeMir (L. esculentum miraculin). Sequence similarity places the encoded protein in the soybean trypsin-inhibitor family (Kunitz). LeMir mRNA is found in root, hypocotyl, and flower tissues, with the highest expression in the root. Rapid induction of expression upon nematode infection is localized to root tips. In situ hybridization shows that LeMir is expressed constitutively in the root-cap and root-tip epidermis. The LeMir protein product (LeMir) was produced in the yeast Pichia pastoris for generation of antibodies. Western-blot analysis showed that LeMir expression is up-regulated by nematode infection and by wounding. LeMir is also expressed in tomato callus tissue. Immunoprint analysis revealed that LeMir is expressed throughout the seedling root, but that levels are highest at the root/shoot junction. Analysis of seedling root exudates revealed that LeMir is secreted from the root into the surrounding environment, suggesting that it may interact with soil-borne microorganisms.
Resumo:
Long-term potentiation (LTP) has been shown to be impaired in mice deficient in the brain-derived neurotrophic factor (BDNF) gene, as well as in a number of other knockout animals. Despite its power the gene-targeting approach is always fraught with the danger of looking at the cumulative direct and indirect effects of the absence of a particular gene rather than its immediate function. The re-expression of a specific gene at a selective time point and at a specific site in gene-defective mutants presents a potent procedure to overcome this limitation and to evaluate the causal relationship between the absence of a particular gene and the impairment of a function in gene-defective animals. Here we demonstrate that the re-expression of the BDNF gene in the CA1 region almost completely restores the severely impaired LTP in hippocampal slices of BDNF-deficient mice. The results therefore provide strong evidence for the direct involvement of BDNF in the process of LTP.
Resumo:
Using a mRNA differential screening of fibroblasts differing for the expression of c-fos we isolated a c-fos-induced growth factor (FIGF). The deduced protein sequence predicts that the cDNA codes for a new member of the platelet-derived growth factor/vascular endothelial growth factor (PDGF/VEGF) family. Northern blot analysis shows that FIGF expression is strongly reduced in c-fos-deficient cells. Transfection of exogenous c-fos driven by a constitutive promoter restores the FIGF expression in these cells. In contrast, both PDGF and VEGF expression is unaffected by c-fos. FIGF is a secreted dimeric protein able to stimulate mitogenic activity in fibroblasts. FIGF overexpression induces morphological alterations in fibroblasts. The cells acquire a spindle-shaped morphology, become more refractive, disorganized, and detach from the plate. These results imply that FIGF is a downstream growth and morphogenic effector of c-fos. These results also suggest that the expression of FIGF in response to c-fos activation induces specific differentiation patterns and its aberrant activation contributes to the malignant phenotype of tumors.
Resumo:
We have previously reported repeat-induced gene silencing (RIGS) in Arabidopsis, in which transgene expression may be silenced epigenetically when repeated sequences are present. Among an allelic series of lines comprising a primary transformant and various recombinant progeny carrying different numbers of drug resistance gene copies at the same locus, silencing was found to depend strictly on repeated sequences and to correlate with an absence of steady-state mRNA. We now report characterization, in nuclei isolated from the same transgenic lines, of gene expression by nuclear run-on assay and of chromatin structure by nuclease protection assay. We find that silencing is correlated with absence of run-on transcripts, indicating that expression is silenced at the level of transcription. We find further that silencing is also correlated with increased resistance to both DNase I and micrococcal nuclease, indicating that the silenced state reflects a change in chromatin configuration. We propose that silencing results when a locally paired region of homologous repeated nucleotide sequences is flanked by unpaired heterologous DNA, which leads chromatin to adopt a local configuration that is difficult to transcribe, and possibly akin to heterochromatin.
Resumo:
The role of nitric oxide (NO) in the pathogenesis of influenza virus-induced pneumonia in mice was investigated. Experimental influenza virus pneumonia was produced with influenza virus A/Kumamoto/Y5/67(H2N2). Both the enzyme activity of NO synthase (NOS) and mRNA expression of the inducible NOS were greatly increased in the mouse lungs; increases were mediated by interferon gamma. Excessive production of NO in the virus-infected lung was studied further by using electron spin resonance (ESR) spectroscopy. In vivo spin trapping with dithiocarbamate-iron complexes indicated that a significant amount of NO was generated in the virus-infected lung. Furthermore, an NO-hemoglobin ESR signal appeared in the virus-infected lung, and formation of NO-hemoglobin was significantly increased by treatment with superoxide dismutase and was inhibited by N(omega)-monomethyl-L-arginine (L-NMMA) administration. Immunohistochemistry with a specific anti-nitrotyrosine antibody showed intense staining of alveolar phagocytic cells such as macrophages and neutrophils and of intraalveolar exudate in the virus-infected lung. These results strongly suggest formation of peroxynitrite in the lung through the reaction of NO with O2-, which is generated by alveolar phagocytic cells and xanthine oxidase. In addition, administration of L-NMMA resulted in significant improvement in the survival rate of virus-infected mice without appreciable suppression of their antiviral defenses. On the basis of these data, we conclude that NO together with O2- which forms more reactive peroxynitrite may be the most important pathogenic factors in influenza virus-induced pneumonia in mice.
Resumo:
Glycoprotein D (gD) of herpes simplex virus 1 (HSV-1) is required for stable attachment and penetration of the virus into susceptible cells after initial binding. We derived anti-idiotypic antibodies to the neutralizing monoclonal antibody HD1 to gD of HSV-1. These antibodies have the properties expected of antibodies against a gD receptor. Specifically, they bind to the surface of HEp-2, Vero, and HeLa cells susceptible to HSV infection and specifically react with a Mr 62,000 protein in these and other (143TK- and BHK) cell lines. They neutralize virion infectivity, drastically decrease plaque formation by impairing cell-to-cell spread of virions, and reduce polykaryocytosis induced by strain HFEM, which carries a syncytial (syn-) mutation. They do not affect HSV growth in a single-step cycle and plaque formation by an unrelated virus, indicating that they specifically affect the interaction of HSV gD) with a cell surface receptor. We conclude that the Mr 62,000 cell surface protein interacts with gD to enable spread of HSV-1 from cell to cell and virus-induced polykaryocytosis.
Resumo:
Epstein-Barr virus (EBV) is a human DNA tumor virus that efficiently immortalizes human primary B lymphocytes in vitro. Although viral genes that are expressed in latently infected B lymphocytes have been shown to function in cellular growth control, their detailed genetic analysis has been cumbersome for two reasons. The viral genome is too large to permit genetic engineering and human primary B lymphocytes, the only targets for infection by EBV in vitro, are both intractable in culture and recalcitrant to DNA transfection. To overcome these obstacles, we have assembled all the essential genes of EBV on a single recombinant vector molecule in Escherichia coli. We show here that this mini-EBV plasmid can yield immortalized B cells upon transfer of its naked DNA into human primary B lymphocytes. Established cell lines carry recombinant vector DNA and cannot support virus production. Because this DNA can be easily manipulated in E. coli, mutant mini-EBVs as well as foreign genes can now be introduced and studied successfully in recipient B lymphocytes from any human donors. These mini-EBVs therefore are potentially useful for human gene therapy.