37 resultados para Epsilon toxin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eutypine (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzaldehyde) is a toxin produced by Eutypa lata, the causal agent of eutypa dieback in the grapevine (Vitis vinifera). Eutypine is enzymatically converted by numerous plant tissues into eutypinol (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzyl alcohol), a metabolite that is nontoxic to grapevine. We report a four-step procedure for the purification to apparent electrophoretic homogeneity of a eutypine-reducing enzyme (ERE) from etiolated mung bean (Vigna radiata) hypocotyls. The purified protein is a monomer of 36 kD, uses NADPH as a cofactor, and exhibits a Km value of 6.3 μm for eutypine and a high affinity for 3- and 4-nitro-benzaldehyde. The enzyme failed to catalyze the reverse reaction using eutypinol as a substrate. ERE detoxifies eutypine efficiently over a pH range from 6.2 to 7.5. These data strongly suggest that ERE is an aldehyde reductase that could probably be classified into the aldo-keto reductase superfamily. We discuss the possible role of this enzyme in eutypine detoxification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clostridium difficile, a causative agent of antibiotic-associated diarrhea and its potentially lethal form, pseudomembranous colitis, produces two large protein toxins that are responsible for the cellular damage associated with the disease. The level of toxin production appears to be critical for determining the severity of the disease, but the mechanism by which toxin synthesis is regulated is unknown. The product of a gene, txeR, that lies just upstream of the tox gene cluster was shown to be needed for tox gene expression in vivo and to activate promoter-specific transcription of the tox genes in vitro in conjunction with RNA polymerases from C. difficile, Bacillus subtilis, or Escherichia coli. TxeR was shown to function as an alternative sigma factor for RNA polymerase. Because homologs of TxeR regulate synthesis of toxins and a bacteriocin in other Clostridium species, TxeR appears to be a prototype for a novel mode of regulation of toxin genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antillatoxin (ATX) is a lipopeptide derived from the pantropical marine cyanobacterium Lyngbya majuscula. ATX is neurotoxic in primary cultures of rat cerebellar granule cells, and this neuronal death is prevented by either N-methyl-d-aspartate (NMDA) receptor antagonists or tetrodotoxin. To further explore the potential interaction of ATX with voltage-gated sodium channels, we assessed the influence of tetrodotoxin on ATX-induced Ca2+ influx in cerebellar granule cells. The rapid increase in intracellular Ca2+ produced by ATX (100 nM) was antagonized in a concentration-dependent manner by tetrodotoxin. Additional, more direct, evidence for an interaction with voltage-gated sodium channels was derived from the ATX-induced allosteric enhancement of [3H]batrachotoxin binding to neurotoxin site 2 of the α subunit of the sodium channel. ATX, moreover, produced a strong synergistic stimulation of [3H]batrachotoxin binding in combination with brevetoxin, which is a ligand for neurotoxin site 5 on the voltage-gated sodium channel. Positive allosteric interactions were not observed between ATX and either α-scorpion toxin or the pyrethroid deltamethrin. That ATX interaction with voltage-gated sodium channels produces a gain of function was demonstrated by the concentration-dependent and tetrodotoxin-sensitive stimulation of 22Na+ influx in cerebellar granule cells exposed to ATX. Together these results demonstrate that the lipopeptide ATX is an activator of voltage-gated sodium channels. The neurotoxic actions of ATX therefore resemble those of brevetoxins that produce neural insult through depolarization-evoked Na+ load, glutamate release, relief of Mg2+ block of NMDA receptors, and Ca2 + influx.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some foreign genes introduced into plants are poorly expressed, even when transcription is controlled by a strong promoter. Perhaps the best examples of this problem are the cry genes of Bacillus thuringiensis (B.t.), which encode the insecticidal proteins commonly referred to as B.t. toxins. As a step toward overcoming such problems most effectively, we sought to elucidate the mechanisms limiting the expression of a typical B.t.-toxin gene, cryIA(c), which accumulates very little mRNA in tobacco (Nicotiana tabacum) cells. Most cell lines transformed with the cryIA(c) B.t.-toxin gene accumulate short, polyadenylated transcripts. The abundance of these transcripts can be increased by treating the cells with cycloheximide, a translation inhibitor that can stabilize many unstable transcripts. Using a series of hybridizations, reverse-transcriptase polymerase chain reactions, and RNase-H-digestion experiments, poly(A+) addition sites were identified in the B.t.-toxin-coding region corresponding to the short transcripts. A fourth polyadenylation site was identified using a chimeric gene. These results demonstrate for the first time to our knowledge that premature polyadenylation can limit the expression of a foreign gene in plants. Moreover, this work emphasizes that further study of the fundamental principles governing polyadenylation in plants will have basic as well as applied significance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well established that the expression of Bacillus thuringiensis (B.t.) toxin genes in higher plants is severely limited at the mRNA level, but the cause remains controversial. Elucidating whether mRNA accumulation is limited transcriptionally or posttranscriptionally could contribute to effective gene design as well as provide insights about endogenous plant gene-expression mechanisms. To resolve this controversy, we compared the expression of an A/U-rich wild-type cryIA(c) gene and a G/C-rich synthetic cryIA(c) B.t.-toxin gene under the control of identical 5′ and 3′ flanking sequences. Transcriptional activities of the genes were equal as determined by nuclear run-on transcription assays. In contrast, mRNA half-life measurements demonstrated directly that the wild-type transcript was markedly less stable than that encoded by the synthetic gene. Sequences that limit mRNA accumulation were located at more than one site within the coding region, and some appeared to be recognized in Arabidopsis but not in tobacco (Nicotiana tabacum). These results support previous observations that some A/U-rich sequences can contribute to mRNA instability in plants. Our studies further indicate that some of these sequences may be differentially recognized in tobacco cells and Arabidopsis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GM1-ganglioside receptor binding by the B subunit of cholera toxin (CtxB) is widely accepted to initiate toxin action by triggering uptake and delivery of the toxin A subunit into cells. More recently, GM1 binding by isolated CtxB, or the related B subunit of Escherichia coli heat-labile enterotoxin (EtxB), has been found to modulate leukocyte function, resulting in the down-regulation of proinflammatory immune responses that cause autoimmune disorders such as rheumatoid arthritis and diabetes. Here, we demonstrate that GM1 binding, contrary to expectation, is not sufficient to initiate toxin action. We report the engineering and crystallographic structure of a mutant cholera toxin, with a His to Ala substitution in the B subunit at position 57. Whereas the mutant retained pentameric stability and high affinity binding to GM1-ganglioside, it had lost its immunomodulatory activity and, when part of the holotoxin complex, exhibited ablated toxicity. The implications of these findings on the mode of action of cholera toxin are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cholera toxin is normally observed only in the Golgi apparatus and not in the endoplasmic reticulum (ER) although the enzymatically active A subunit of cholera toxin has a KDEL sequence. Here we demonstrate transport of horseradish peroxidase-labeled cholera toxin to the ER by electron microscopy in thapsigargin-treated A431 cells. Thapsigargin treatment strongly increased cholera toxin-induced cAMP production, and the formation of the catalytically active A1 fragment was somewhat increased. Binding of cholera toxin to the cell surface and transport of toxin to the Golgi apparatus were not changed in thapsigargin-treated cells, suggesting increased retrograde transport of cholera toxin from the Golgi apparatus to the ER. The data demonstrate that retrograde transport of cholera toxin can take place and that the transport is under regulation. The results are consistent with the idea that retrograde transport can be important for the action of cholera toxin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protective antigen (PA) component of anthrax toxin mediates entry of the toxin's lethal factor (LF) and edema factor into the cytosolic compartment of mammalian cells. The amino-terminal domain of LF (LFn; 255 amino acids) binds LF to PA, and when fused to heterologous proteins, the LFn domain delivers such proteins to the cytoplasm in the presence of PA. In the current study, we fused a 9-amino acid cytotoxic T-lymphocyte (CTL) epitope (LLO91-99) from an intracellular pathogen, Listeria monocytogenes, to LFn and measured the ability of the resulting LFn-LLO91-99 fusion protein to stimulate a CTL response against the epitope in BALB/c mice. As little as 300 fmol of fusion could stimulate a response. The stimulation was PA-dependent and occurred with the peptide fused to either the amino terminus or the carboxyl terminus of LFn. Upon challenge with L. monocytogenes, mice previously injected with LFn-LLO91-99 and PA showed a reduction of colony-forming units in spleen and liver, relative to nonimmunized control mice. These results indicate that anthrax toxin may be useful as a CTL-peptide delivery system for research and medical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lethal factor (LF) and edema factor (EF) of anthrax toxin bind by means of their amino-terminal domains to protective antigen (PA) on the surface of toxin-sensitive cells and are translocated to the cytosol, where they act on intracellular targets. Genetically fusing the amino-terminal domain of LF (LFN; residues 1-255) to certain heterologous proteins has been shown to potentiate these proteins for PA-dependent delivery to the cytosol. We report here that short tracts of lysine, arginine, or histidine residues can also potentiate a protein for such PA-dependent delivery. Fusion of these polycationic tracts to the amino terminus of the enzymic A chain of diphtheria toxin (DTA; residues 1-193) enabled it to be translocated to the cytosol by PA and inhibit protein synthesis. The efficiency of translocation was dependent on tract length: (LFN > Lys8 > Lys6 > Lys3). Lys6 was approximately 100-fold more active than Arg6 or His6, whereas Glu6 and (SerSerGly)2 were inactive. Arg6DTA was partially degraded in cell culture, which may explain its low activity relative to that of Lys6DTA. The polycationic tracts may bind to anionic sites at the cell surface (possibly on PA), allowing the fusion proteins to be coendocytosed with PA and delivered to the endosome, where translocation to the cytosol occurs. Excess free LFN blocked the action of LFNDTA, but not of Lys6DTA. This implies that binding to the LF/EF site is not an obligatory step in translocation and suggests that the polycationic tag binds to a different site. Besides elucidating the process of translocation in anthrax toxin, these findings may aid in developing systems to deliver heterologous proteins and peptides to the cytoplasm of mammalian cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oral administration of autoantigens can prevent and partially suppress autoimmune diseases in a number of experimental models, Depending on the dose of antigen fed, this approach appears to involve distinct yet reversible and short-lasting mechanisms (anergy/deletion and suppression) and usually requires repeated feeding of large (suppression) to massive (anergy/deletion) amounts of autoantigens to be effective. Most importantly, this approach is relatively less effective in animals already systemically sensitized to the fed antigen, such as in animals already harboring autoreactive T cells and, thus, presumably also in humans suffering from an autoimmune disorder. We have previously shown that feeding a single dose of minute amounts of antigens conjugated to cholera toxin B subunit (CTB) can effectively suppress delayed-type hypersensitivity reactions in systemically immune animals. We now report that feeding small amounts of myelin basic protein (MBP) conjugated to CTB either before or after disease induction protected rats from experimental autoimmune encephalomyelitis. Such treatment was as effective in suppressing interleukin 2 production and proliferative responses of lymph node cells to MBP as treatment involving repeated feeding with much larger (50- to 100-fold) doses of free MBP. Different from the latter treatment, which led to decreased production of interferon-gamma in lymph nodes, low-dose oral CTB-MBP treatment was associated with increased interferon-gamma production. Most importantly, low-dose oral CTB-MBP treatment greatly reduced the level of leukocyte infiltration into spinal cord tissue compared with treatment with repeated feeding of large doses of MBP. These results suggest that the protection from experimental autoimmune encephalomyelitis achieved by feeding CTB-conjugated myelin autoantigen involves immunomodulating mechanisms that are distinct from those implicated by conventional protocols of oral tolerance induction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have genetically replaced the native receptor binding domain of diphtheria toxin with an extended form of substance P (SP): SP-glycine (SP-Gly). The resulting fusion protein, DAB389SP-Gly, is composed of the catalytic and transmembrane domains of diphtheria toxin genetically coupled to SP-Gly. Because native SP requires a C-terminal amide moiety to bind with high affinity to the SP receptor, the precursor form of the fusion toxin, DAB389SP-Gly, was converted to DAB389SP by treatment with peptidylglycine-alpha-amidating monooxygenase. We demonstrate that following conversion, DAB389SP is selectively cytotoxic for cell lines that express either the rat or the human SP receptor. We also demonstrate that the cytotoxic action of DAB389SP is mediated via the SP receptor and dependent upon passage through an acidic compartment. To our knowledge, this is the first reported use of a neuropeptide as the targeting ligand for a fusion toxin; and the first instance in which an inactive precursor form of a fusion toxin is converted to the active form by a posttranslational modification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expression of the epsilon-subunit gene of the acetylcholine receptor (AChR) by myonuclei located at the neuromuscular junction is precisely regulated during development. A key role in this regulation is played by the synaptic portion of the basal lamina, a structure that is also known to contain agrin, a component responsible for the formation of postsynaptic specializations. We tested whether agrin has a function in synaptic AChR gene expression. Synaptic basal lamina from native adult muscle and recombinant agrin bound to various substrates induced in cultured rat myotubes AChR clusters that were colocalized with epsilon-subunit mRNA. Estimation of transcript levels by Northern hybridization analysis of total RNA showed a significant increase when myotubes were grown on substrate impregnated with agrin, but were unchanged when agrin was applied in the medium. The effect was independent of the receptor aggregating activity of the agrin isoform used, and agrin acted, at least in part, at the level of epsilon-subunit gene transcription. These findings are consistent with a role of agrin in the regulation of AChR subunit gene expression at the neuromuscular junction, which would depend on its binding to the synaptic basal lamina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superantigens, such as toxic shock syndrome toxin 1 (TSST-1), have been implicated in the pathogenesis of several autoimmune and allergic diseases associated with polyclonal B cell activation. In this report, we studied the in vitro effects of TSST-1 on B cell activation. We show herein that TSST-1 produced antagonistic effects on Ig synthesis by peripheral blood mononuclear cells (PBMC) from normal subjects, depending on the concentration used; Ig production was inhibited at 1000 pg/ml (P < 0.01) and enhanced at 1 and 0.01 pg/ml (P < 0.01) of toxin. Cultures of PBMC were then examined for morphologic features and DNA fragmentation characteristic for apoptosis. B cells exhibited a significantly higher (P < 0.01) incidence of apoptosis after stimulation with 1000 pg/ml of TSST-1 compared with 1 or 0.01 pg/ml of toxin or medium alone. Abundant expression of Fas, a cell surface protein that mediates apoptosis, was detected on B cells after stimulation with 1000 pg/ml of TSST-1 and was significantly higher on B cells undergoing apoptosis than on live cells (P = 0.01). Additionally, increased Fas expression and B cell death occurred at concentrations of TSST-1 inducing the production of high amounts of gamma interferon (IFN-gamma), and both events could be blocked by neutralizing anti-IFN-gamma antibody. These findings suggest that high concentrations of TSST-1 can induce IFN-gamma-dependent B cell apoptosis, whereas at low concentrations it stimulates Ig synthesis by PBMC from normal subjects. These findings support the concept that staphylococcal toxins have a role in B cell hyperactivity in autoimmunity and allergy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein kinase C (PKC), a major cellular receptor for tumor-promoting phorbol esters and diacylglycerols (DGs), appears to be involved in a variety of cellular functions, although its activation mechanism in vivo is not yet fully understood. To evaluate the signaling pathways involved in the activation of PKC epsilon upon stimulation by platelet-derived growth factor (PDGF) receptor (PDGFR), we used a series of PDGFR "add-back" mutants. Activation of a PDGFR mutant (Y40/51) that binds and activates phosphatidylinositol 3-kinase (PI 3-kinase) caused translocation of PKC epsilon from the cytosol to the membrane in response to PDGF. A PDGFR mutant (Y1021) that binds and activates phospholipase C gamma (PLC gamma), but not PI 3-kinase, also caused the PDGF-dependent translocation of PKC epsilon. The translocation of PKC epsilon upon stimulation of PDGFR (Y40/51) was inhibited by wortmannin, an inhibitor of PI 3-kinase. Activation of PKC epsilon was further confirmed in terms of PKC epsilon-dependent expression of a phorbol 12-tetradecanoate 13-acetate response element (TRE)-luciferase reporter. Further, purified PKC epsilon was activated in vitro by either DG or synthetic phosphatidylinositol 3,4,5-trisphosphate. These results clearly demonstrate that PKC epsilon is activated through redundant and independent signaling pathways which most likely involve PLC gamma or PI 3-kinase in vivo and that PKC epsilon is one of the downstream mediators of PI 3-kinase whose downstream targets remain to be identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protein-tyrosine phosphatase epsilon (PTP epsilon) is a transmembranal, receptor-type protein that possesses two phosphatase catalytic domains characteristic of transmembranal phosphatases. Here we demonstrate the existence of a nontransmembranal isoform of PTP epsilon, PTP epsilon-cytoplasmic. PTP epsilon-cytoplasmic and the transmembranal isoform of PTP epsilon have separate, nonoverlapping expression patterns. Further, the data clearly indicate that control of which of the two isoforms is to be expressed is initiated at the transcriptional level, suggesting that they have distinct physiological roles. PTP epsilon-cytoplasmic mRNA is the product of a delayed early response gene in NIH 3T3 fibroblasts, and its transcription is regulated through a pathway that requires protein kinase C. The human homologue of PTP epsilon-cytoplasmic has also been cloned and is strongly up-regulated in the early stages of phorbol 12-tetradecanoate 13-acetate-induced differentiation of HL-60 cells. Sequence analysis indicates and cellular fractionation experiments confirm that this isoform is a cytoplasmic molecule. PTP epsilon-cytoplasmic is therefore the initial example to our knowledge of a nontransmembranal protein-tyrosine phosphatase that contains two tandem of catalytic domains.