140 resultados para Drosophila protein


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The importance of the amyloid precursor protein (APP) in the pathogenesis of Alzheimer’s disease (AD) became apparent through the identification of distinct mutations in the APP gene, causing early onset familial AD with the accumulation of a 4-kDa peptide fragment (βA4) in amyloid plaques and vascular deposits. However, the physiological role of APP is still unclear. In this work, Drosophila melanogaster is used as a model system to analyze the function of APP by expressing wild-type and various mutant forms of human APP in fly tissue culture cells as well as in transgenic fly lines. After expression of full-length APP forms, secretion of APP but not of βA4 was observed in both systems. By using SPA4CT, a short APP form in which the signal peptide was fused directly to the βA4 region, transmembrane domain, and cytoplasmic tail, we observed βA4 release in flies and fly-tissue culture cells. Consequently, we showed a γ-secretase activity in flies. Interestingly, transgenic flies expressing full-length forms of APP have a blistered-wing phenotype. As the wing is composed of interacting dorsal and ventral epithelial cell layers, this phenotype suggests that human APP expression interferes with cell adhesion/signaling pathways in Drosophila, independently of βA4 generation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The activity of Ras family proteins is modulated in vivo by the function of GTPase activating proteins, which increase their intrinsic rate of GTP hydrolysis. We have isolated cDNAs encoding a GAP for the Drosophila Rap1 GTPase. Drosophila Rapgap1 encodes an 850-amino acid protein with a central region that displays substantial sequence similarity to human RapGAP. This domain, when expressed in Escherichia coli, potently stimulates Rap1 GTPase activity in vitro. Unlike Rap1, which is ubiquitously expressed, Rapgap1 expression is highly restricted. Rapgap1 is expressed at high levels in the developing photoreceptor cells and in the optic lobe. Rapgap1 mRNA is also localized in the pole plasm in an oskar-dependent manner. Although mutations that completely abolish Rapgap1 function display no obvious phenotypic abnormalities, overexpression of Rapgap1 induces a rough eye phenotype that is exacerbated by reducing Rap1 gene dosage. Thus, Rapgap1 can function as a negative regulator of Rap1-mediated signaling in vivo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The intracellular part of the Rel signal transduction pathway in Drosophila is encoded by Toll, tube, pelle, dorsal, and cactus, and it functions to form the dorsal–ventral axis in the Drosophila embryo. Upon activation of the transmembrane receptor Toll, Dorsal dissociates from its cytoplasmic inhibitor Cactus and enters the nucleus. Tube and Pelle are required to relay the signal from Toll to the Dorsal–Cactus complex. In a yeast two-hybrid assay, we found that both Tube and Pelle interact with Dorsal. We confirmed these interactions in an in vitro binding assay. Tube interacts with Dorsal via its C-terminal domain, whereas full-length Pelle is required for Dorsal binding. Tube and Pelle bind Dorsal in the N-terminal domain 1 of the Dorsal Rel homology region rather than at the Cactus binding site. Domain 1 has been found to be necessary for Dorsal nuclear targeting. Genetic experiments indicate that Tube–Dorsal interaction is necessary for normal signal transduction. We propose a model in which Tube, Pelle, Cactus, and Dorsal form a multimeric complex that represents an essential aspect of signal transduction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Drosophila fusome is a germ cell-specific organelle assembled from membrane skeletal proteins and membranous vesicles. Mutational studies that have examined inactivating alleles of fusome proteins indicate that the organelle plays central roles in germ cell differentiation. Although mutations in genes encoding skeletal fusome components prevent proper cyst formation, mutations in the bag-of-marbles gene disrupt the assembly of membranous cisternae within the fusome and block cystoblast differentiation altogether. To understand the relationship between fusome cisternae and cystoblast differentiation, we have begun to identify other proteins in this network of fusome tubules. In this article we present evidence that the fly homologue of the transitional endoplasmic reticulum ATPase (TER94) is one such protein. The presence of TER94 suggests that the fusome cisternae grow by vesicle fusion and are a germ cell modification of endoplasmic reticulum. We also show that fusome association of TER94 is Bam-dependent, suggesting that cystoblast differentiation may be linked to fusome reticulum biogenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the best-described transmembrane signal transduction mechanisms is based on receptor activation of the α subunit of the heterotrimeric G protein Gs, leading to stimulation of adenylyl cyclase and the production of cAMP. Intracellular cAMP is then thought to mediate its effects largely, if not entirely, by activation of protein kinase A and the subsequent phosphorylation of substrates which in turn control diverse cellular phenomena. In this report we demonstrate, by two different methods, that reduction or elimination of protein kinase A activity had no effect on phenotypes generated by activation of Gsα pathways in Drosophila wing epithelial cells. These genetic studies show that the Gsα pathway mediates its primary effects by a novel pathway in differentiating wing epithelial cells. This novel pathway may in part be responsible for some of the complex, cell-specific responses observed following activation of this pathway in different cell types.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Drosophila mutant methuselah (mth) was identified from a screen for single gene mutations that extended average lifespan. Mth mutants have a 35% increase in average lifespan and increased resistance to several forms of stress, including heat, starvation, and oxidative damage. The protein affected by this mutation is related to G protein-coupled receptors of the secretin receptor family. Mth, like secretin receptor family members, has a large N-terminal ectodomain, which may constitute the ligand binding site. Here we report the 2.3-Å resolution crystal structure of the Mth extracellular region, revealing a folding topology in which three primarily β-structure-containing domains meet to form a shallow interdomain groove containing a solvent-exposed tryptophan that may represent a ligand binding site. The Mth structure is analyzed in relation to predicted Mth homologs and potential ligand binding features.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The discovery that several inherited human diseases are caused by mtDNA depletion has led to an increased interest in the replication and maintenance of mtDNA. We have isolated a new mutant in the lopo (low power) gene from Drosophila melanogaster affecting the mitochondrial single-stranded DNA-binding protein (mtSSB), which is one of the key components in mtDNA replication and maintenance. lopo1 mutants die late in the third instar before completion of metamorphosis because of a failure in cell proliferation. Molecular, histochemical, and physiological experiments show a drastic decrease in mtDNA content that is coupled with the loss of respiration in these mutants. However, the number and morphology of mitochondria are not greatly affected. Immunocytochemical analysis shows that mtSSB is expressed in all tissues but is highly enriched in proliferating tissues and in the developing oocyte. lopo1 is the first mtSSB mutant in higher eukaryotes, and its analysis demonstrates the essential function of this gene in development, providing an excellent model to study mitochondrial biogenesis in animals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chromosome-specific gene regulation is known thus far only as a mechanism to equalize the transcriptional activity of the single male X chromosome with that of the two female X chromosomes. In Drosophila melanogaster, a complex including the five Male-Specific Lethal (MSL) proteins, “paints” the male X chromosome, mediating its hypertranscription. Here, with the molecular cloning of Painting of fourth (Pof), we describe a previously uncharacterized gene encoding a chromosome-specific protein in Drosophila. Unlike the MSL proteins, POF paints an autosome, the fourth chromosome of Drosophila melanogaster. Chromosome translocation analysis shows that the binding depends on an initiation site in the proximal region of chromosome 4 and spreads in cis to involve the entire chromosome. The spreading depends on sequences or structures specific to chromosome 4 and cannot extend to parts of other chromosomes translocated to the fourth. Spreading can also occur in trans to a paired homologue that lacks the initiation region. In the related species Drosophila busckii, POF paints the entire X chromosome exclusively in males, suggesting relationships between the fourth chromosome and the X and between POF complexes and dosage-compensation complexes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Heterochromatin protein 1 (HP1) is a conserved component of the highly compact chromatin of higher eukaryotic centromeres and telomeres. Cytogenetic experiments in Drosophila have shown that HP1 localization into this chromatin is perturbed in mutants for the origin recognition complex (ORC) 2 subunit. ORC has a multisubunit DNA-binding activity that binds origins of DNA replication where it is required for origin firing. The DNA-binding activity of ORC is also used in the recruitment of the Sir1 protein to silence nucleation sites flanking silent copies of the mating-type genes in Saccharomyces cerevisiae. A fraction of HP1 in the maternally loaded cytoplasm of the early Drosophila embryo is associated with a multiprotein complex containing Drosophila melanogaster ORC subunits. This complex appears to be poised to function in heterochromatin assembly later in embryonic development. Here we report the identification of a novel component of this complex, the HP1/ORC-associated protein. This protein contains similarity to DNA sequence-specific HMG proteins and is shown to bind specific satellite sequences and the telomere-associated sequence in vitro. The protein is shown to have heterochromatic localization in both diploid interphase and mitotic chromosomes and polytene chromosomes. Moreover, the gene encoding HP1/ORC-associated protein was found to display reciprocal dose-dependent variegation modifier phenotypes, similar to those for mutants in HP1 and the ORC 2 subunit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Specification of unequal daughter cell fates in the Drosophila external sense organ lineage requires asymmetric localization of the intrinsic determinant Numb as well as cell-cell interactions mediated by the Delta ligand and Notch receptor. Previous genetic studies indicated that numb acts upstream of Notch, and biochemical studies revealed that Numb can bind Notch. For a functional assay of the action of Numb on Notch signaling, we expressed these proteins in cultured Drosophila cells and used nuclear translocation of Suppressor of Hairless [Su(H)] as a reporter for Notch activity. We found that Numb interfered with the ability of Notch to cause nuclear translocation of Su(H); both the C-terminal half of the phosphotyrosine binding domain and the C terminus of Numb are required to inhibit Notch. Overexpression of Numb during wing development, which is sensitive to Notch dosage, revealed that Numb is also able to inhibit the Notch receptor in vivo. In the external sense organ lineage, the phosphotyrosine binding domain of Numb was found to be essential for the function but not for asymmetric localization of Numb. Our results suggest that Numb determines daughter cell fates in the external sense organ lineage by inhibiting Notch signaling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have isolated a new Drosophila mutant, satori (sat), the males of which do not court or copulate with female flies. The sat mutation comaps with fruitless (fru) at 91B and does not rescue the bisexual phenotype of fru, indicating that sat is allelic to fru (fru(sat)). The fru(sat) adult males lack a male-specific muscle, the muscle of Lawrence, as do adult males with other fru alleles. Molecular cloning and analyses of the genomic and complementary DNAs indicated that transcription of the fru locus yields several different transcripts. The sequence of fru cDNA clones revealed a long open reading frame that potentially encodes a putative transcription regulator with a BTB domain and two zinc finger motifs. In the 5' noncoding region, three putative transformer binding sites were identified in the female transcript but not in male transcripts. The fru gene is expressed in a population of brain cells, including those in the antennal lobe, that have been suggested to be involved in determination of male sexual orientation. We suggest that fru functions downstream of tra in the sex-determination cascade in some neural cells and that inappropriate sexual development of these cells in the fru mutants results in altered sexual orientation of the fly.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mosquito (Aedes aegypti) vitellogenin receptor (AaVgR) is a large membrane-bound protein (214 kDa when linearized) that mediates internalization of vitellogenin, the major yolk-protein precursor, by oocytes during egg development. We have cloned and sequenced two cDNA fragments encompassing the entire coding region of AaVgR mRNA, to our knowledge the first insect VgR sequence to be reported. The 7.3-kb AaVgR mRNA is present only in female germ-line cells and is abundant in previtellogenic oocytes, suggesting that the AaVgR gene is expressed early in oocyte differentiation. The deduced amino acid sequence predicts a 202.7-kDa protein before posttranslational processing. The AaVgR is a member of the low density lipoprotein receptor superfamily, sharing significant homology with the chicken (Gallus gallus) VgR and particularly the Drosophila melanogaster yolk protein receptor, in spite of a very different ligand for the latter. Distance-based phylogenetic analyses suggest that the insect VgR/yolk protein receptor lineage and the vertebrate VgR/low density lipoprotein receptor lineage diverged before the bifurcation of nematode and deuterostome lines.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During Drosophila development, nuclear and cell divisions are coordinated in response to developmental signals. In yeast and mammalian cells, signals that control cell division regulate the activity of cyclin-dependent kinases (Cdks) through proteins such as cyclins that interact with the Cdks. Here we describe two Drosophila cyclins identified from a set of Cdk-interacting proteins. One, cyclin J, is of a distinctive sequence type; its exclusive maternal expression pattern suggests that it may regulate oogenesis or the early nuclear divisions of embryogenesis. The other belongs to the D class of cyclins, previously identified in mammalian cells. We show that Drosophila cyclin D is expressed in early embryos and in imaginal disc cells in a pattern that anticipates cell divisions. Expression in the developing eye disc at the anterior edge of the morphogenetic furrow suggests that cyclin D acts early, prior to cyclin E, in inducing G1-arrested cells to enter S phase. Our results also suggest that, although cyclin D may be necessary, its expression alone is not sufficient to initiate the events leading to S phase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We cloned a Drosophila homolog to the sterol responsive element binding proteins (SREBPs). In vertebrates, the SREBPs are regulated by a mechanism that involves cleavage of the protein that normally residues in the cellular membranes and translocation of the released transcription factor into the nucleus. Regulation of the Drosophila factor HLH106 apparently follows the same mechanism, and we find the full-length gene product in the membrane fraction and a shorter cross-reacting form in the nuclear fraction. This nuclear form, which may correspond to proteolytically activated HLH106, is abundant in the blood cell line mbn-2. The general domain structure of HLH106 is very similar to that in SREBP. HLH106 is expressed throughout development, and it is present at high levels in Drosophila cell lines. In contrast to the rat homolog, HLH106 transcripts are not more abundant in adipose tissue than in other tissues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have identified another Drosophila GTP-binding protein (G protein) alpha subunit, dGq alpha-3. Transcripts encoding dGq alpha-3 are derived from alternative splicing of the dGq alpha locus previously shown to encode two visual-system-specific transcripts [Lee, Y.-J., Dobbs, M.B., Verardi, M.L. & Hyde, D.R. (1990) Neuron 5, 889-898]. Immunolocalization studies using dGq alpha-3 isoform-specific antibodies and LacZ fusion genes show that dGq alpha-3 is expressed in chemosensory cells of the olfactory and taste structures, including a subset of olfactory and gustatory neurons, and in cells of the central nervous system, including neurons in the lamina ganglionaris. These data are consistent with a variety of roles for dGq alpha-3, including mediating a subset of olfactory and gustatory responses in Drosophila, and supports the idea that some chemosensory responses use G protein-coupled receptors and the second messenger inositol 1,4,5-trisphosphate.