243 resultados para Domain-binding Proteins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have characterized two Saccharomyces cerevisiae proteins, Sro9p and Slf1p, which contain a highly conserved motif found in all known La proteins. Originally described as an autoantigen in patients with rheumatic disease, the La protein binds to newly synthesized RNA polymerase III transcripts. In yeast, the La protein homologue Lhp1p is required for the normal pathway of tRNA maturation and also stabilizes newly synthesized U6 RNA. We show that deletions in both SRO9 and SLF1 are not synthetically lethal with a deletion in LHP1, indicating that the three proteins do not function in a single essential process. Indirect immunofluorescence microscopy reveals that although Lhp1p is primarily localized to the nucleus, Sro9p is cytoplasmic. We demonstrate that Sro9p and Slf1p are RNA-binding proteins that associate preferentially with translating ribosomes. Consistent with a role in translation, strains lacking either Sro9p or Slf1p are less sensitive than wild-type strains to certain protein synthesis inhibitors. Thus, Sro9p and Slf1p define a new and possibly evolutionarily conserved class of La motif-containing proteins that may function in the cytoplasm to modulate mRNA translation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The products of the recF, recO, and recR genes are thought to interact and assist RecA in the utilization of single-stranded DNA precomplexed with single-stranded DNA binding protein (Ssb) during synapsis. Using immunoprecipitation, size-exclusion chromatography, and Ssb protein affinity chromatography in the absence of any nucleotide cofactors, we have obtained the following results: (i) RecF interacts with RecO, (ii) RecF interacts with RecR in the presence of RecO to form a complex consisting of RecF, RecO, and RecR (RecF–RecO–RecR); (iii) RecF interacts with Ssb protein in the presence of RecO. These data suggested that RecO mediates the interactions of RecF protein with RecR and with Ssb proteins. Incubation of RecF, RecO, RecR, and Ssb proteins resulted in the formation of RecF–RecO–Ssb complexes; i.e., RecR was excluded. Preincubation of RecF, RecO, and RecR proteins prior to addition of Ssb protein resulted in the formation of complexes consisting of RecF, RecO, RecR, and Ssb proteins. These data suggest that one role of RecF is to stabilize the interaction of RecR with RecO in the presence of Ssb protein. Finally, we found that interactions of RecF with RecO are lost in the presence of ATP. We discuss these results to explain how the RecF–RecO–RecR complex functions as an anti-Ssb factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bruton’s tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase that is crucial for human and murine B cell development, and its deficiency causes human X-linked agammaglobulinemia and murine X-linked immunodeficiency. In this report, we describe the function of the Btk-binding protein Sab (SH3-domain binding protein that preferentially associates with Btk), which we reported previously as a newly identified Src homology 3 domain-binding protein. Sab was shown to inhibit the auto- and transphosphorylation activity of Btk, which prompted us to propose that Sab functions as a transregulator of Btk. Forced overexpression of Sab in B cells led to the reduction of B cell antigen receptor-induced tyrosine phosphorylation of Btk and significantly reduced both early and late B cell antigen receptor-mediated events, including calcium mobilization, inositol 1,4,5-trisphosphate production, and apoptotic cell death, where the involvement of Btk activity has been demonstrated previously. Together, these results indicate the negative regulatory role of Sab in the B cell cytoplasmic tyrosine kinase pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overaccumulation of lipids in nonadipose tissues of obese rodents may lead to lipotoxic complications such as diabetes. To assess the pathogenic role of the lipogenic transcription factor, sterol regulatory element binding protein 1 (SREBP-1), we measured its mRNA in liver and islets of obese, leptin-unresponsive fa/fa Zucker diabetic fatty rats. Hepatic SREBP-1 mRNA was 2.4 times higher than in lean +/+ controls, primarily because of increased SREBP-1c expression. mRNA of lipogenic enzymes ranged from 2.4- to 4.6-fold higher than lean controls, and triacylglycerol (TG) content was 5.4 times higher. In pancreatic islets of fa/fa rats, SREBP-1c was 3.4 times higher than in lean +/+ Zucker diabetic fatty rats. The increase of SREBP-1 in liver and islets of untreated fa/fa rats was blocked by 6 weeks of troglitazone therapy, and the diabetic phenotype was prevented. Up-regulation of SREBP-1 also occurred in livers of Sprague–Dawley rats with diet-induced obesity. Hyperleptinemia, induced in lean +/+ rats by adenovirus gene transfer, lowered hepatic SREBP-1c by 74% and the lipogenic enzymes from 35 to 59%. In conclusion, overnutrition increases and adenovirus-induced hyperleptinemia decreases SREBP-1c expression in liver and islets. SREBP-1 overexpression, which is prevented by troglitazone, may play a role in the ectopic lipogenesis and lipotoxicity complicating obesity in Zucker diabetic fatty rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatic lipid synthesis is known to be regulated by food consumption. In rodents fasting decreases the synthesis of cholesterol as well as fatty acids. Refeeding a high carbohydrate/low fat diet enhances fatty acid synthesis by 5- to 20-fold above the fed state, whereas cholesterol synthesis returns only to the prefasted level. Sterol regulatory element binding proteins (SREBPs) are transcription factors that regulate genes involved in cholesterol and fatty acid synthesis. Here, we show that fasting markedly reduces the amounts of SREBP-1 and -2 in mouse liver nuclei, with corresponding decreases in the mRNAs for SREBP-activated target genes. Refeeding a high carbohydrate/low fat diet resulted in a 4- to 5-fold increase of nuclear SREBP-1 above nonfasted levels, whereas nuclear SREBP-2 protein returned only to the nonfasted level. The hepatic mRNAs for fatty acid biosynthetic enzymes increased 5- to 10-fold above nonfasted levels, a pattern that paralleled the changes in nuclear SREBP-1. The hepatic mRNAs for enzymes involved in cholesterol synthesis returned to the nonfasted level, closely following the pattern of nuclear SREBP-2 regulation. Transgenic mice that overproduce nuclear SREBP-1c failed to show the normal decrease in hepatic mRNA levels for cholesterol and fatty acid synthetic enzymes upon fasting. We conclude that SREBPs are regulated by food consumption in the mouse liver and that the decline in nuclear SREBP-1c upon fasting may explain in part the decrease in mRNAs encoding enzymes of the fatty acid biosynthetic pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In animal cell lysates the multiprotein heat-shock protein 90 (hsp90)-based chaperone complexes consist of hsp70, hsp40, and p60. These complexes act to convert steroid hormone receptors to their steroid-binding state by assembling them into heterocomplexes with hsp90, p23, and one of several immunophilins. Wheat germ lysate also contains a hsp90-based chaperone system that can assemble the glucocorticoid receptor into a functional heterocomplex with hsp90. However, only two components of the heterocomplex-assembly system, hsp90 and hsp70, have thus far been identified. Recently, purified mammalian p23 preadsorbed with JJ3 antibody-protein A-Sepharose pellets was used to isolate a mammalian p23-wheat hsp90 heterocomplex from wheat germ lysate (J.K. Owens-Grillo, L.F. Stancato, K. Hoffmann, W.B. Pratt, and P. Krishna [1996] Biochemistry 35: 15249–15255). This heterocomplex was found to contain an immunophilin(s) of the FK506-binding class, as judged by binding of the radiolabeled immunosuppressant drug [3H]FK506 to the immune pellets in a specific manner. In the present study we identified the immunophilin components of this heterocomplex as FKBP73 and FKBP77, the two recently described high-molecular-weight FKBPs of wheat. In addition, we present evidence that the two FKBPs bind hsp90 via tetratricopeptide repeat domains. Our results demonstrate that binding of immunophilins to hsp90 via tetratricopeptide repeat domains is a conserved protein interaction in plants. Conservation of this protein-to-protein interaction in both plant and animal cells suggests that it is important for the biological action of the high-molecular-weight immunophilins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied transcription initiation in the mitochondria of higher plants, with particular respect to promoter structures. Conserved elements of these promoters have been successfully identified by in vitro transcription systems in different species, whereas the involved protein components are still unknown. Proteins binding to double-stranded oligonucleotides representing different parts of the pea (Pisum sativum) mitochondrial atp9 were analyzed by denaturation-renaturation chromatography and mobility-shift experiments. Two DNA-protein complexes were detected, which appeared to be sequence specific in competition experiments. Purification by hydroxyapatite, phosphocellulose, and reversed-phase high-pressure liquid chromatography separated two polypeptides with apparent molecular masses of 32 and 44 kD. Both proteins bound to conserved structures of the pea atp9 and the heterologous Oenothera berteriana atp1 promoters and to sequences just upstream. Possible functions of these proteins in mitochondrial promoter recognition are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have compared the molecular architecture and function of the myeloperoxidase upstream enhancer in multipotential versus granulocyte-committed hematopoietic progenitor cells. We show that the enhancer is accessible in multipotential cell chromatin but functionally incompetent before granulocyte commitment. Multipotential cells contain both Pu1 and C-EBP alpha as enhancer-binding activities. Pu1 is unphosphorylated in both multipotential and granulocyte-committed cells but is phosphorylated in B lymphocytes, raising the possibility that differential phosphorylation may play a role in specifying its lymphoid versus myeloid functions. C-EBP alpha exists as multiple phosphorylated forms in the nucleus of both multipotential and granulocyte-committed cells. C-EBP beta is unphosphorylated and cytoplasmically localized in multipotential cells but exists as a phosphorylated nuclear enhancer-binding activity in granulocyte-committed cells. Granulocyte colony-stimulating factor-induced granulocytic differentiation of multipotential progenitor cells results in activation of C-EBP delta expression and functional recruitment of C-EBP delta and C-EBP beta to the nucleus. Our results implicate Pu1 and the C-EBP family as critical regulators of myeloperoxidase gene expression and are consistent with a model in which a temporal exchange of C-EBP isoforms at the myeloperoxidase enhancer mediates the transition from a primed state in multipotential cells to a transcriptionally active configuration in promyelocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With use of the yeast two-hybrid system, the proteins RIP and FADD/MORT1 have been shown to interact with the "death domain" of the Fas receptor. Both of these proteins induce apoptosis in mammalian cells. Using receptor fusion constructs, we provide evidence that the self-association of the death domain of RIP by itself is sufficient to elicit apoptosis. However, both the death domain and the adjacent alpha-helical region of RIP are required for the optimal cell killing induced by the overexpression of this gene. By contrast, FADD's ability to induce cell death does not depend on crosslinking. Furthermore, RIP and FADD appear to activate different apoptotic pathways since RIP is able to induce cell death in a cell line that is resistant to the apoptotic effects of Fas, tumor necrosis factor, and FADD. Consistent with this, a dominant negative mutant of FADD, lacking its N-terminal domain, blocks apoptosis induced by RIP but not by FADD. Since both pathways are blocked by CrmA, the interleukin 1 beta converting enzyme family protease inhibitor, these results suggest that FADD and RIP can act along separable pathways that nonetheless converge on a member of the interleukin 1 beta converting enzyme family of cysteine proteases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to identify guanine nucleotide-binding proteins (G proteins) involved in the agonist- and guanosine 5'-[gamma-thio]triphosphate (GTP[gamma-S])-induced increase in the Ca2+ sensitivity of 20-kDa myosin light chain (MLC20) phosphorylation and contraction in smooth muscle. A constitutively active, recombinant val14p21rhoA.GTP expressed in the baculovirus/Sf9 system, but not the protein expressed without posttranslational modification in Escherichia coli, induced at constant Ca2+ (pCa 6.4) a slow contraction associated with increased MLC20 phosphorylation from 19.8% to 29.5% (P < 0.05) in smooth muscle permeabilized with beta-esein. The effect of val14p21rhoA.GTP was inhibited by ADP-ribosylation of the protein and was absent in smooth muscle extensively permeabilized with Triton X-100. ADP-ribosylation of endogenous p21rho with epidermal cell differentiation inhibitor (EDIN) inhibited Ca2+ sensitization induced by GTP [in rabbit mesenteric artery (RMA) and rabbit ileum smooth muscles], by carbachol (in rabbit ileum), and by endothelin (in RMA), but not by phenylephrine (in RMA), and only slowed the rate without reducing the amplitude of contractions induced in RMA by 1 microM GTP[gamma-S] at constant Ca2+ concentrations. AlF(4-)-induced Ca2+ sensitization was inhibited by both guanosine 5'-[beta-thio]diphosphate (GDP[beta-S]) and by EDIN. EDIN also inhibited, to a lesser extent, contractions induced by Ca2+ alone (pCa 6.4) in both RMA and rabbit ileum. ADP-ribosylation of trimeric G proteins with pertussis toxin did not inhibit Ca2+ sensitization. We conclude that p21rho may play a role in physiological Ca2+ sensitization as a cofactor with other messengers, rather than as a sole direct inhibitor of smooth muscle MLC20 phosphatase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ran, a small nuclear GTP binding protein, is essential for the translocation of nuclear proteins through the nuclear pore complex. We show that several proteins, including the Saccharomyces cerevisiae Nup2p and Caenorhabditis elegans F59A2.1 nucleoporins, contain domains similar to the previously characterized murine Ran binding protein (RBP, termed RBP1). To test the significance of this similarity, we have used the corresponding domains of Nup2p and a putative S. cerevisiae RBP in Ran binding assays and the yeast two-hybrid system. Both proteins bind S. cerevisiae Ran, but only the putative S. cerevisiae RBP binds human Ran. Two-hybrid analysis revealed Ran-Ran interactions and that yeast and human Rans can interact. These data identify Nup2p as a target for Ran in the nuclear pore complex, suggesting a direct role for it in nuclear-cytoplasmic transport. We discuss the possibility that proteins harboring Ran binding domains link the Ran GTPase cycle to specific functions in the nucleus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Open reading frames in the Plasmodium falciparum genome encode domains homologous to the adhesive domains of the P. falciparum EBA-175 erythrocyte-binding protein (eba-175 gene product) and those of the Plasmodium vivax and Plasmodium knowlesi Duffy antigen-binding proteins. These domains are referred to as Duffy binding-like (DBL), after the receptor that determines P. vivax invasion of Duffy blood group-positive human erythrocytes. Using oligonucleotide primers derived from short regions of conserved sequence, we have developed a reverse transcription-PCR method that amplifies sequences encoding the DBL domains of expressed genes. Products of these reverse transcription-PCR amplifications include sequences of single-copy genes (including eba-175) and variably transcribed genes that cross-hybridize to multiple regions of the genome. Restriction patterns of the multicopy genes show a high degree of polymorphism among different parasite lines, whereas single-copy genes are generally conserved. Characterization of the single-copy genes has identified a gene (ebl-1) that is related to eba-175 and is likely to be involved in erythrocyte invasion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have identified a class of proteins that bind single-stranded telomeric DNA and are required for the nuclear organization of telomeres and/or telomere-associated proteins. Rlf6p was identified by its sequence similarity to Gbp1p, a single-stranded telomeric DNA-binding protein from Chlamydomonas reinhardtii. Rlf6p and Gbp1p bind yeast single-stranded G-strand telomeric DNA. Both proteins include at least two RNA recognition motifs, which are found in many proteins that interact with single-stranded nucleic acids. Disruption of RLF6 alters the distribution of repressor/activator protein 1 (Rap1p), a telomere-associated protein. In wild-type yeast cells, Rap1p localizes to a small number of perinuclear spots, while in rlf6 cells Rap1p appears diffuse and nuclear. Interestingly, telomere position effect and telomere length control, which require RAP1, are unaffected by rlf6 mutations, demonstrating that Rap1p localization can be uncoupled from other Rap1p-dependent telomere functions. In addition, expression of Chlamydomonas GBP1 restores perinuclear, punctate Rap1p localization in rlf6 mutant cells. The functional complementation of a fungal gene by an algal gene suggests that Rlf6p and Gbp1p are members of a conserved class of single-stranded telomeric DNA-binding proteins that influence nuclear organization. Furthermore, it demonstrates that, despite their unusual codon bias, C. reinhardtii genes can be efficiently translated in Saccharomyces cerevisiae cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small GTP-binding proteins play a critical role in the regulation of a range of cellular processes--including growth, differentiation, and intracellular transportation. Previously, we isolated a gene, rgp1, encoding a small GTP-binding protein, by differential screening of a rice cDNA library with probe DNAs from rice tissues treated with or without 5-azacytidine, a powerful inhibitor of DNA methylation. To determine the physiological role of rgp1, the coding region was introduced into tobacco plants. Transformants, with rgp1 in either sense or antisense orientations, showed distinct phenotypic changes with reduced apical dominance, dwarfism, and abnormal flower development. These abnormal phenotypes appeared to be associated with the higher levels of endogenous cytokinins that were 6-fold those of wild-type plants. In addition, the transgenic plants produced salicylic acid and salicylic acid-beta-glucoside in an unusual response to wounding, thus conferring increased resistance to tobacco mosaic virus infection. In normal plants, the wound- and pathogen-induced signal-transduction pathways are considered to function independently. However, the wound induction of salicylic acid in the transgenic plants suggests that expression of rgp1 somehow interfered with the normal signaling pathways and resulted in cross-signaling between these distinct transduction systems. The results imply that the defense signal-transduction system consists of a complicated and finely tuned network of several regulatory factors, including cytokinins, salicylic acid, and small GTP-binding proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatty acid binding proteins (FABPs) exhibit a β-barrel topology, comprising 10 antiparallel β-sheets capped by two short α-helical segments. Previous studies suggested that fatty acid transfer from several FABPs occurs during interaction between the protein and the acceptor membrane, and that the helical domain of the FABPs plays an important role in this process. In this study, we employed a helix-less variant of intestinal FABP (IFABP-HL) and examined the rate and mechanism of transfer of fluorescent anthroyloxy fatty acids (AOFA) from this protein to model membranes in comparison to the wild type (wIFABP). In marked contrast to wIFABP, IFABP-HL does not show significant modification of the AOFA transfer rate as a function of either the concentration or the composition of the acceptor membranes. These results suggest that the transfer of fatty acids from IFABP-HL occurs by an aqueous diffusion-mediated process, i.e., in the absence of the helical domain, effective collisional transfer of fatty acids to membranes does not occur. Binding of wIFABP and IFABP-HL to membranes was directly analyzed by using a cytochrome c competition assay, and it was shown that IFABP-HL was 80% less efficient in preventing cytochrome c from binding to membranes than the native IFABP. Collectively, these results indicate that the α-helical region of IFABP is involved in membrane interactions and thus plays a critical role in the collisional mechanism of fatty acid transfer from IFABP to phospholipid membranes.