69 resultados para Distress signals.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generated transgenic mice expressing chimeric receptors, which comprise extracellular domains of the human granulocyte–macrophage colony-stimulating factor (hGM-CSF) receptor and transmembrane and cytoplasmic domains of the mouse leukemia inhibitory factor receptor. In suspension cultures of lineage-negative (Lin−), 5-fluorouracil-resistant bone marrow cells of the transgenic mice, a combination of hGM-CSF and stem cell factor (SCF) induced exponential expansions of mixed colony-forming unit. The combination of hGM-CSF and SCF was effective on enriched, Lin−Sca-1+c-kit+ progenitors and increased either mixed colony-forming unit or cobblestone area–forming cells. In case of stimulation with hGM-CSF and SCF, interleukin-6 (IL-6) and SCF, or IL-11 and SCF, the most efficient expansion was achieved with hGM-CSF and SCF. When Lin−Sca-1+c-kit+CD34− further enriched progenitors were clone sorted and individually incubated in the presence of SCF, hGM-CSF stimulated a larger number of cells than did IL-6, IL-6 and soluble IL-6 receptor (IL-6R), or IL-11. These data suggest the presence of IL-6Rα-, IL-11Rα-, and gp130-low to -negative primitive hematopoietic progenitors. Such primitive progenitors are equipped with signal transduction molecules and can expand when these chimeric receptors are genetically introduced into the cells and stimulated with hGM-CSF in the presence of SCF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One pathway in forming synaptic-like microvesicles (SLMV) involves direct budding from the plasma membrane, requires adaptor protein 2 (AP2) and is brefeldin A (BFA) resistant. A second route leads from the plasma membrane to an endosomal intermediate from which SLMV bud in a BFA-sensitive, AP3-dependent manner. Because AP3 has been shown to bind to a di-leucine targeting signal in vitro, we have investigated whether this major class of targeting signals is capable of directing protein traffic to SLMV in vivo. We have found that a di-leucine signal within the cytoplasmic tail of human tyrosinase is responsible for the majority of the targeting of HRP-tyrosinase chimeras to SLMV in PC12 cells. Furthermore, we have discovered that a Met-Leu di-hydrophobic motif within the extreme C terminus of synaptotagmin I supports 20% of the SLMV targeting of a CD4-synaptotagmin chimera. All of the traffic to the SLMV mediated by either di-Leu or Met-Leu is BFA sensitive, strongly suggesting a role for AP3 and possibly for an endosomal intermediate in this process. The differential reduction in SLMV targeting for HRP-tyrosinase and CD4-synaptotagmin chimeras by di-alanine substitutions or BFA treatment implies that different proteins use the two routes to the SLMV to differing extents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth factors such as insulin regulate phosphatidylinositol 3-kinase-dependent actin cytoskeleton rearrangement in many types of cells. However, the mechanism by which the insulin signal is transmitted to the actin cytoskeleton remains largely unknown. Yeast two-hybrid screening revealed that the phosphatidylinositol 3-kinase downstream effector phosphoinositide-dependent protein kinase-1 (PDK1) interacted with protein kinase N (PKN), a Rho-binding Ser/Thr protein kinase potentially implicated in a variety of cellular events, including phosphorylation of cytoskeletal components. PDK1 and PKN interacted in vitro and in intact cells, and this interaction was mediated by the kinase domain of PDK1 and the carboxyl terminus of PKN. In addition to a direct interaction, PDK1 also phosphorylated Thr774 in the activation loop and activated PKN. Insulin treatment or ectopic expression of the wild-type PDK1 or PKN, but not protein kinase Cζ, induced actin cytoskeleton reorganization and membrane ruffling in 3T3-L1 fibroblasts and Rat1 cells that stably express the insulin receptor (Rat1-IR). However, the insulin-stimulated actin cytoskeleton reorganization in Rat1-IR cells was prevented by expression of kinase-defective PDK1 or PDK1-phosphorylation site-mutated PKN. Thus, phosphorylation by PDK1 appears to be necessary for PKN to transduce signals from the insulin receptor to the actin cytoskeleton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal transducers and activators of transcription (STAT)-induced STAT inhibitor-1 [SSI-1; also known as suppressor of cytokine signaling-1 (SOCS-1)] was identified as a negative feedback regulator of Janus kinase-STAT signaling. We previously generated mice lacking the SSI-1 gene (SSI-1 −/−) and showed that thymocytes and splenocytes in SSI-1 −/− mice underwent accelerated apoptosis. In this paper, we show that murine embryonic fibroblasts lacking the SSI-1 gene are more sensitive than their littermate controls to tumor necrosis factor-α (TNF-α)-induced cell death. In addition, L929 cells forced to express SSI-1 (L929/SSI-1), but not SSI-3 or SOCS-5, are resistant to TNF-α-induced cell death. Furthermore L929/SSI-1 cells treated with TNF-α sustain the activation of p38 mitogen-activated protein (MAP) kinase. In contrast, SSI-1 −/− murine embryonic fibroblasts treated with TNF-α show hardly any activation of p38 MAP kinase. These findings suggest that SSI-1 suppresses TNF-α-induced cell death, which is mediated by p38 MAP kinase signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant cells can respond qualitatively and quantitatively to a wide range of environmental signals. Ca2+ is used as an intracellular signal for volume regulation in response to external osmotic changes. We show here that the spatiotemporal patterns of hypo-osmotically induced Ca2+ signals vary dramatically with stimulus strength in embryonic cells of the marine alga Fucus. Biphasic or multiphasic Ca2+ signals reflect Ca2+ elevations in distinct cellular domains. These propagate via elemental Ca2+ release in nuclear or peripheral regions that are rich in endoplasmic reticulum. Cell volume regulation specifically requires Ca2+ elevation in apical peripheral regions, whereas an altered cell division rate occurs only in response to stimuli that cause Ca2+ elevation in nuclear regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various proteins with different biological activities have been observed to be translocated from the nucleus to the cytoplasm in an energy- and signal-dependent manner in eukaryotic cells. This nuclear export is directed by nuclear export signals (NESs), typically characterized by hydrophobic, primarily leucine, amino acid residues. Moreover, it has been shown that CRM1/exportin 1 is an export receptor for leucine-rich NESs. However, additional NES-interacting proteins have been described. In particular, eukaryotic initiation factor 5A (eIF-5A) has been shown to be a critical cellular cofactor for the nuclear export of the HIV type 1 (HIV-1) Rev trans-activator protein. In this study we compared the nuclear export activity of NESs of different origin. Microinjection of export substrates into the nucleus of somatic cells in combination with specific inhibitors indicated that specific nuclear export pathways exist for different NES-containing proteins. In particular, inhibition of eIF-5A blocked the nuclear export of NESs derived from the HIV-1 Rev and human T cell leukemia virus type I Rex trans-activators, whereas nucleocytoplasmic translocation of the protein kinase inhibitor-NES was unaffected. In contrast, however, inhibition of CRM1/exportin 1 blocked the nuclear export of all NES-containing proteins investigated. Our data confirm that CRM1/exportin 1 is a general export receptor for leucine-rich NESs and suggest that eIF-5A acts either upstream of CRM1/exportin 1 or forms a complex with the NES and CRM1/exportin 1 in the nucleocytoplasmic translocation of the HIV-1 Rev and human T cell leukemia virus type I Rex RNA export factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strains of Xanthomonas campestris pv. vesicatoria (Xcv) carrying avrBs2 are specifically recognized by Bs2 pepper plants, resulting in localized cell death and plant resistance. Agrobacterium-mediated transient expression of the Xcv avrBs2 gene in plant cells results in Bs2-dependent cell death, indicating that the AvrBs2 protein alone is sufficient for the activation of disease resistance-mediated cell death in planta. We now provide evidence that AvrBs2 is secreted from Xcv and that secretion is type III (hrp) dependent. N- and C-terminal deletion analysis of AvrBs2 has identified the effector domain of AvrBs2 recognized by Bs2 pepper plants. By using a truncated Pseudomonas syringae AvrRpt2 effector reporter devoid of type III signal sequences, we have localized the minimal region of AvrBs2 required for type III secretion in Xcv. Furthermore, we have identified the region of AvrBs2 required for both type III secretion and translocation to host plants. The mapping of AvrBs2 sequences sufficient for type III delivery also revealed the presence of a potential mRNA secretion signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Owls and other animals, including humans, use the difference in arrival time of sounds between the ears to determine the direction of a sound source in the horizontal plane. When an interaural time difference (ITD) is conveyed by a narrowband signal such as a tone, human beings may fail to derive the direction represented by that ITD. This is because they cannot distinguish the true ITD contained in the signal from its phase equivalents that are ITD ± nT, where T is the period of the stimulus tone and n is an integer. This uncertainty is called phase-ambiguity. All ITD-sensitive neurons in birds and mammals respond to an ITD and its phase equivalents when the ITD is contained in narrowband signals. It is not known, however, if these animals show phase-ambiguity in the localization of narrowband signals. The present work shows that barn owls (Tyto alba) experience phase-ambiguity in the localization of tones delivered by earphones. We used sound-induced head-turning responses to measure the sound-source directions perceived by two owls. In both owls, head-turning angles varied as a sinusoidal function of ITD. One owl always pointed to the direction represented by the smaller of the two ITDs, whereas a second owl always chose the direction represented by the larger ITD (i.e., ITD − T).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compared peripheral and mucosal primary CD8 T cell responses to inflammatory and noninflammatory forms of antigen in a T cell-adoptive transfer system. Immunization with the soluble antigen, ovalbumin (ova), administered i.p. or orally without adjuvant, activated nonmucosal CD8 T cells but did not induce cytotoxic activity. However, after activation, the transferred cells entered the intestinal mucosa and became potent antigen-specific killers. Thus, exogenous intact soluble protein entered the major histocompatibility complex class I antigen presentation pathway and induced mucosal cytotoxic T lymphocytes. Moreover, distinct costimulatory requirements for activation of peripheral versus mucosal T cells were noted in that the CD28 ligand, B7-1, was critical for activated mucosal T cell generation but not for activation of peripheral CD8 T cells. The costimulator, B7-2, was required for optimum activation of both populations. Infection with a new recombinant vesicular stomatitis virus encoding ovalbumin induced lytic activity in mucosal as well as peripheral sites, demonstrating an adjuvant effect of inflammatory mediators produced during virus infection. Generation of antiviral cytotoxic T lymphocytes was also costimulation-dependent. The results indicated that induction of peripheral tolerance via antigen administration may not extend to mucosal sites because of distinct costimulatory and inflammatory signals in the mucosa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microorganisms must sense their environment and rapidly tune their metabolism to ambient conditions to efficiently use available resources. We have identified a gene encoding a response regulator, NblR, that complements a cyanobacterial mutant unable to degrade its light-harvesting complex (phycobilisome), in response to nutrient deprivation. Cells of the nblR mutant (i) have more phycobilisomes than wild-type cells during nutrient-replete growth, (ii) do not degrade phycobilisomes during sulfur, nitrogen, or phosphorus limitation, (iii) cannot properly modulate the phycobilisome level during exposure to high light, and (iv) die rapidly when starved for either sulfur or nitrogen, or when exposed to high light. Apart from regulation of phycobilisome degradation, NblR modulates additional functions critical for cell survival during nutrient-limited and high-light conditions. NblR does not appear to be involved in acclimation responses that occur only during a specific nutrient limitation. In contrast, it controls at least some of the general acclimation responses; those that occur during any of a number of different stress conditions. NblR plays a pivotal role in integrating different environmental signals that link the metabolism of the cell to light harvesting capabilities and the activities of the photosynthetic apparatus; this modulation is critical for cell survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cbl is the product of the protooncogene c-cbl and is involved in T cell antigen receptor (TCR)-mediated signaling. To understand the role of Cbl for immune system development and function, we generated a Cbl-deficient mouse strain. In Cbl-deficient mice, positive selection of the thymocytes expressing major histocompatibility complex class II-restricted transgenic TCR was significantly enhanced. Two factors may have contributed to the altered thymic selection. First, Cbl deficiency markedly up-regulated the activity of ZAP-70 and mitogen-activated protein kinases. The mitogen-activated protein kinase pathway was shown previously to be involved in thymic positive selection. Second, Cbl-deficient thymocytes expressed CD3 and CD4 molecules at higher levels, which consequently may increase the avidity of TCR/major histocompatibility complex/coreceptor interaction. Thus, Cbl plays a novel role in modulating TCR-mediated multiple signaling pathways and fine-tunes the signaling threshold for thymic selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordination between the activities of organelles and the nucleus requires the exchange of signals. Using Chlamydomonas, we provide evidence that plastid-derived chlorophyll precursors may replace light in the induction of two nuclear heat-shock genes (HSP70A and HSP70B) and thus qualify as plastidic signal. Mutants defective in the synthesis of Mg-protoporphyrin IX were no longer inducible by light. Feeding of Mg-protoporphyrin IX or its dimethyl ester to wild-type or mutant cells in the dark resulted in induction. The analysis of HSP70A promoter mutants that do or do not respond to light revealed that these chlorophyll precursors specifically activate the light signaling pathway. Activation of gene expression was not observed when protoporphyrin IX, protochlorophyllide, or chlorophyllide were added. A specific interaction of defined chlorophyll precursors with factor(s) that regulate nuclear gene expression is suggested.