17 resultados para Dispersal stages


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many major weeds rely upon vegetative dispersal by rhizomes and seed dispersal by "shattering" of the mature inflorescence. We report molecular analysis of these traits in a cross between cultivated and wild species of Sorghum that are the probable progenitors of the major weed "johnsongrass." By restriction fragment length polymorphism mapping, variation in the number of rhizomes producing above-ground shoots was associated with three quantitative trait loci (QTLs). Variation in regrowth (ratooning) after overwintering was associated with QTLs accounting for additional rhizomatous growth and with QTLs influencing tillering. Vegetative buds that become rhizomes are similar to those that become tillers--one QTL appears to influence the number of such vegetative buds available, and additional independent genes determine whether individual buds differentiate into tillers or rhizomes. DNA markers described herein facilitate cloning of genes associated with weediness, comparative study of rhizomatousness in other Poaceae, and assessment of gene flow between cultivated and weedy sorghums--a risk that constrains improvement of sorghum through biotechnology. Cloning of "weediness" genes may create opportunities for plant growth regulation, in suppressing propagation of weeds and enhancing productivity of major forage, turf, and "ratoon" crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although both CD4+ and CD8+ T cells are clearly required to generate long-lasting anti-tumor immunity induced by s.c. vaccination with interleukin 2 (IL-2)-transfected, irradiated M-3 clone murine melanoma cells, some controversy continues about the site and mode of T-cell activation in this system. Macrophages, granulocytes, and natural killer cells infiltrate the vaccination site early after injection into either syngeneic euthymic DBA/2 mice or athymic nude mice and eliminate the inoculum within 48 hr. We could not find T cells at the vaccination site, which argues against the concept that T-cell priming by the IL-2-secreting cancer cells occurs directly at that location. However, reverse transcription-PCR revealed transcripts indicative of T-cell activation and expansion in the draining lymph nodes of mice immunized with the IL-2-secreting vaccine but not in mice vaccinated with untransfected, irradiated M-3 cells. We therefore propose that the antigen-presenting cells, which invade the vaccination site, process tumor-derived antigens and, subsequently, initiate priming of tumor-specific T lymphocytes in lymphoid organs. These findings suggest a three-stage process for the generation of effector T cells after vaccination with IL-2-secreting tumor cells: (i) tumor-antigen uptake and processing at the site of injection by antigen-presenting cells, (ii) migration of antigen-presenting cells into the regional draining lymph nodes, where T-cell priming occurs, and (iii) circulation of activated T cells that either perform or initiate effector mechanisms leading to tumor cell destruction.