52 resultados para Deprivation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Initiation factor eIF4G is an essential protein required for initiation of mRNA translation via the 5′ cap-dependent pathway. It interacts with eIF4E (the mRNA 5′ cap-binding protein) and serves as an anchor for the assembly of further initiation factors. With treatment of Saccharomyces cerevisiae with rapamycin or with entry of cells into the diauxic phase, eIF4G is rapidly degraded, whereas initiation factors eIF4E and eIF4A remain stable. We propose that nutritional deprivation or interruption of the TOR signal transduction pathway induces eIF4G degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-component histidine kinases recently have been found in eukaryotic organisms including fungi, slime molds, and plants. We describe the identification of a gene, COS1, from the opportunistic pathogen Candida albicans by using a PCR-based screening strategy. The sequence of COS1 indicates that it encodes a homolog of the histidine kinase Nik-1 from the filamentous fungus Neurospora crassa. COS1 is also identical to a gene called CaNIK1 identified in C. albicans by low stringency hybridization using CaSLN1 as a probe [Nagahashi, S., Mio, T., Yamada-Okabe, T., Arisawa, M., Bussey, H. & Yamada-Okabe, H. (1998) Microbiol. 44, 425–432]. We assess the function of COS1/CaNIK1 by constructing a diploid deletion mutant. Mutants lacking both copies of COS1 appear normal when grown as yeast cells; however, they exhibit defective hyphal formation when placed on solid agar media, either in response to nutrient deprivation or serum. In constrast to the Δnik-1 mutant, the Δcos1/Δcos1 mutant does not demonstrate deleterious effects when grown in media of high osmolarity; however both Δnik-1 and Δcos1/Δcos1 mutants show defective hyphal formation. Thus, as predicted for Nik-1, Cos1p may be involved in some aspect of hyphal morphogenesis and may play a role in virulence properties of the organism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two regioisomers with C3 or D3 symmetry of water-soluble carboxylic acid C60 derivatives, containing three malonic acid groups per molecule, were synthesized and found to be equipotent free radical scavengers in solution as assessed by EPR analysis. Both compounds also inhibited the excitotoxic death of cultured cortical neurons induced by exposure to N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), or oxygen-glucose deprivation, but the C3 regioisomer was more effective than the D3 regioisomer, possibly reflecting its polar nature and attendant greater ability to enter lipid membranes. At 100 μM, the C3 derivative fully blocked even rapidly triggered, NMDA receptor-mediated toxicity, a form of toxicity with limited sensitivity to all other classes of free radical scavengers we have tested. The C3 derivative also reduced apoptotic neuronal death induced by either serum deprivation or exposure to Aβ1–42 protein. Furthermore, continuous infusion of the C3 derivative in a transgenic mouse carrying the human mutant (G93A) superoxide dismutase gene responsible for a form of familial amyotrophic lateral sclerosis, delayed both death and functional deterioration. These data suggest that polar carboxylic acid C60 derivatives may have attractive therapeutic properties in several acute or chronic neurodegenerative diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heme oxygenase (HO) catalyzes the opening of the heme ring with the release of iron in both plants and animals. In cyanobacteria, red algae, and cryptophyceae, HO is a key enzyme in the synthesis of the chromophoric part of the photosynthetic antennae. In an attempt to study the regulation of this key metabolic step, we cloned and sequenced the pbsA gene encoding this enzyme from the red alga Rhodella violacea. The gene is located on the chloroplast genome, split into three distant exons, and is presumably expressed by a trans-splicing mechanism. The deduced polypeptide sequence is homologous to other reported HOs from organisms containing phycobilisomes (Porphyra purpurea and Synechocystis sp. strain PCC 6803) and, to a lesser extent, to vertebrate enzymes. The expression is transcriptionally activated under iron deprivation, a stress condition frequently encountered by algae, suggesting a second role for HO as an iron-mobilizing agent in photosynthetic organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DsbA, the disulfide bond catalyst of Escherichia coli, is a periplasmic protein having a thioredoxin-like Cys-30-Xaa-Xaa-Cys-33 motif. The Cys-30–Cys-33 disulfide is donated to a pair of cysteines on the target proteins. Although DsbA, having high oxidizing potential, is prone to reduction, it is maintained essentially all oxidized in vivo. DsbB, an integral membrane protein having two pairs of essential cysteines, reoxidizes DsbA that has been reduced upon functioning. It is not known, however, what might provide the overall oxidizing power to the DsbA–DsbB disulfide bond formation system. We now report that E. coli mutants defective in the hemA gene or in the ubiA-menA genes markedly accumulate the reduced form of DsbA during growth under the conditions of protoheme deprivation as well as ubiquinone/menaquinone deprivation. Disulfide bond formation of β-lactamase was impaired under these conditions. Intracellular state of DsbB was found to be affected by deprivation of quinones, such that it accumulates first as a reduced form and then as a form of a disulfide-linked complex with DsbA. This is followed by reduction of the bulk of DsbA molecules. These results suggest that the respiratory electron transfer chain participates in the oxidation of DsbA, by acting primarily on DsbB. It is remarkable that a cellular catalyst of protein folding is connected to the respiratory chain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accumulation of unfolded proteins within the endoplasmic reticulum (ER) of eukaryotic cells triggers the unfolded protein response (UPR), which activates transcription of several genes encoding ER chaperones and folding enzymes. This study reports that conversion of dolichol-linked Man2–5GlcNAc2 intermediates into mature Glc3Man9GlcNAc2 oligosaccharides in primary human adult dermal fibroblasts is also stimulated by the UPR. This stimulation was not evident in several immortal cell lines and did not require a cytoplasmic stress response. Inhibition of dolichol-linked Glc3Man9GlcNAc2 synthesis by glucose deprivation could be counteracted by the UPR, improving the transfer of Glc3Man9GlcNAc2 to asparagine residues on nascent polypeptides. Glycosidic processing of asparagine-linked Glc3Man9GlcNAc2 in the ER leads to the production of monoglucosylated oligosaccharides that promote interaction with the lectin chaperones calreticulin and calnexin. Thus, control of the dolichol-linked Glc3Man9GlcNAc2 supply gives the UPR the potential to maintain efficient protein folding in the ER without new synthesis of chaperones or folding enzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have analyzed the expression of the breast cancer susceptibility gene, Brca2, in mammary epithelial cells as a function of proliferation and differentiation. Our results demonstrate that Brca2 mRNA expression is tightly regulated during mammary epithelial proliferation and differentiation, and that this regulation occurs coordinately with Brca1. Specifically, Brca2 mRNA expression is up-regulated in rapidly proliferating cells; is down-regulated in response to serum deprivation; is expressed in a cell cycle-dependent manner, peaking at the G1/S boundary; and is up-regulated in differentiating mammary epithelial cells in response to glucocorticoids. In each case, an identical pattern of expression was observed for Brca1. These results indicate that proliferative stimuli modulate the mRNA expression of these two breast cancer susceptibility genes. In addition, the coordinate regulation of Brca1 and Brca2 revealed by these experiments suggests that these genes are induced by, and may function in, overlapping regulatory pathways involved in the control of cell proliferation and differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The protooncogene c-abl encodes a nonreceptor tyrosine kinase whose cellular function is unknown. To study the possible involvement of c-Abl in proliferation, differentiation, and cell cycle regulation of early B cells, long-term lymphoid bone marrow cultures were established from c-abl-deficient mice and their wild-type littermates. Interleukin 7-dependent progenitor B-cell clones and lines expressing B220 and CD43 could be generated from both mutant and wild-type mice. The mutant and wild-type lines displayed no difference in their proliferative capacity as measured by thymidine incorporation in response to various concentrations of interleukin 7. Similarly, c-abl deficiency did not interfere with the ability of mutant clones to differentiate into surface IgM-positive cells in vitro. Analysis of cultures after growth factor deprivation, however, revealed a strikingly accelerated rate of cell death in c-abl mutant cells, due to apoptosis as confirmed by terminal deoxynucleotidyltransferase-mediated UTP nick end labeling analysis. Furthermore, a greater susceptibility to apoptotic cell death in c-abl mutant cells was also observed after glucocorticoid treatment. These results suggest that mutant c-Abl renders the B-cell progenitors more sensitive to apoptosis, and may account for some of the phenotypes observed in c-abl-deficient animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inorganic polyphosphate (polyP) kinase was studied for its roles in physiological responses to nutritional deprivation in Escherichia coli. A mutant lacking polyP kinase exhibited an extended lag phase of growth, when shifted from a rich to a minimal medium (nutritional downshift). Supplementation of amino acids to the minimal medium abolished the extended growth lag of the mutant. Levels of the stringent response factor, guanosine 5′-diphosphate 3′-diphosphate, increased in response to the nutritional downshift, but, unlike in the wild type, the levels were sustained in the mutant. These results suggested that the mutant was impaired in the induction of amino acid biosynthetic enzymes. The expression of an amino acid biosynthetic gene, hisG, was examined by using a transcriptional lacZ fusion. Although the mutant did not express the fusion in response to the nutritional downshift, Northern blot analysis revealed a significant increase of hisG-lacZ mRNA. Amino acids generated by intracellular protein degradation are very important for the synthesis of enzymes at the onset of starvation. In the wild type, the rate of protein degradation increased in response to the nutritional downshift whereas it did not in the mutant. Supplementation of amino acids at low concentrations to the minimal medium enabled the mutant to express the hisG-lacZ fusion. Thus, the impaired regulation of protein degradation results in the adaptation defect, suggesting that polyP kinase is required to stimulate protein degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The immunosuppressant rapamycin inhibits Tor1p and Tor2p (target of rapamycin proteins), ultimately resulting in cellular responses characteristic of nutrient deprivation through a mechanism involving translational arrest. We measured the immediate transcriptional response of yeast grown in rich media and treated with rapamycin to investigate the direct effects of Tor proteins on nutrient-sensitive signaling pathways. The results suggest that Tor proteins directly modulate the glucose activation and nitrogen discrimination pathways and the pathways that respond to the diauxic shift (including glycolysis and the citric acid cycle). Tor proteins do not directly modulate the general amino acid control, nitrogen starvation, or sporulation (in diploid cells) pathways. Poor nitrogen quality activates the nitrogen discrimination pathway, which is controlled by the complex of the transcriptional repressor Ure2p and activator Gln3p. Inhibiting Tor proteins with rapamycin increases the electrophoretic mobility of Ure2p. The work presented here illustrates the coordinated use of genome-based and biochemical approaches to delineate a cellular pathway modulated by the protein target of a small molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bcl-2, which can both reduce apoptosis and retard cell cycle entry, is thought to have important roles in hematopoiesis. To evaluate the impact of its ubiquitous overexpression within this system, we targeted expression of the human bcl-2 gene in mice by using the promoter of the vav gene, which is active throughout this compartment but rarely outside it. The vav-bcl-2 transgene was expressed in essentially all nucleated cells of hematopoietic tissues but not notably in nonhematopoietic tissues. Presumably because of enhanced cell survival, the mice displayed increases in myeloid cells as well as a marked elevation in B and T lymphocytes. The spleen was enlarged and the lymphoid follicles expanded. Although total thymic cellularity was normal, T cell development was altered: cells at the very immature and most mature stages were increased, whereas those at the intermediate stage were decreased. Unexpectedly, blood platelets were reduced by half, suggesting that their production from megakaryocytes is regulated by the Bcl-2 family. Colony formation by myeloid progenitor cells in vitro remained cytokine dependent, and the frequency of most progenitor and preprogenitor cells was normal. Macrophage progenitors were less frequent and yielded smaller colonies, however, perhaps reflecting inhibitory effects of Bcl-2 on cell cycling in specific lineages. After irradiation or factor deprivation, Bcl-2 markedly enhanced clonogenic survival of all tested progenitor and preprogenitor cells. Thus, Bcl-2 has multiple effects on the hematopoietic system. These mice should help to further clarify the role of apoptosis in the development and homeostasis of this compartment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is commonly accepted that pathways that regulate proliferation/differentiation processes, if altered in their normal interplay, can lead to the induction of programmed cell death. In a previous work we reported that Polyoma virus Large Tumor antigen (PyLT) interferes with in vitro terminal differentiation of skeletal myoblasts by binding and inactivating the retinoblastoma antioncogene product. This inhibition occurs after the activation of some early steps of the myogenic program. In the present work we report that myoblasts expressing wild-type PyLT, when subjected to differentiation stimuli, undergo cell death and that this cell death can be defined as apoptosis. Apoptosis in PyLT-expressing myoblasts starts after growth factors removal, is promoted by cell confluence, and is temporally correlated with the expression of early markers of myogenic differentiation. The block of the initial events of myogenesis by transforming growth factor β or basic fibroblast growth factor prevents PyLT-induced apoptosis, while the acceleration of this process by the overexpression of the muscle-regulatory factor MyoD further increases cell death in this system. MyoD can induce PyLT-expressing myoblasts to accumulate RB, p21, and muscle- specific genes but is unable to induce G00 arrest. Several markers of different phases of the cell cycle, such as cyclin A, cdk-2, and cdc-2, fail to be down-regulated, indicating the occurrence of cell cycle progression. It has been frequently suggested that apoptosis can result from an unbalanced cell cycle progression in the presence of a contrasting signal, such as growth factor deprivation. Our data involve differentiation pathways, as a further contrasting signal, in the generation of this conflict during myoblast cell apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Growth factor deprivation of endothelial cells induces apoptosis, which is characterized by membrane blebbing, cell rounding, and subsequent loss of cell–matrix and cell–cell contacts. In this study, we show that initiation of endothelial apoptosis correlates with cleavage and disassembly of intracellular and extracellular components of adherens junctions. β-Catenin and plakoglobin, which form intracellular links between vascular endothelial cadherin (VE-cadherin) and actin-binding α-catenin in adherens junctions, are cleaved in apoptotic cells. In vitro incubations of cell lysates and immunoprecipitates with recombinant caspases indicate that CPP32 and Mch2 are involved, possibly by initiating proteolytic processing. Cleaved β-catenin from lysates of apoptotic cells does not bind to endogenous α-catenin, whereas plakoglobin retains its binding capacity. The extracellular portion of the adherens junctions is also altered during apoptosis because VE-cadherin, which mediates endothelial cell–cell interactions, dramatically decreases on the surface of cells. An extracellular fragment of VE-cadherin can be detected in the conditioned medium, and this “shedding” of VE-cadherin can be blocked by an inhibitor of metalloproteinases. Thus, cleavage of β-catenin and plakoglobin and shedding of VE-cadherin may act in concert to disrupt structural and signaling properties of adherens junctions and may actively interrupt extracellular signals required for endothelial cell survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In lysosomes isolated from rat liver and spleen, a percentage of the intracellular inhibitor of the nuclear factor κ B (IκB) can be detected in the lysosomal matrix where it is rapidly degraded. Levels of IκB are significantly higher in a lysosomal subpopulation that is active in the direct uptake of specific cytosolic proteins. IκB is directly transported into isolated lysosomes in a process that requires binding of IκB to the heat shock protein of 73 kDa (hsc73), the cytosolic molecular chaperone involved in this pathway, and to the lysosomal glycoprotein of 96 kDa (lgp96), the receptor protein in the lysosomal membrane. Other substrates for this degradation pathway competitively inhibit IκB uptake by lysosomes. Ubiquitination and phosphorylation of IκB are not required for its targeting to lysosomes. The lysosomal degradation of IκB is activated under conditions of nutrient deprivation. Thus, the half-life of a long-lived pool of IκB is 4.4 d in serum-supplemented Chinese hamster ovary cells but only 0.9 d in serum-deprived Chinese hamster ovary cells. This increase in IκB degradation can be completely blocked by lysosomal inhibitors. In Chinese hamster ovary cells exhibiting an increased activity of the hsc73-mediated lysosomal degradation pathway due to overexpression of lamp2, the human form of lgp96, the degradation of IκB is increased. There are both short- and long-lived pools of IκB, and it is the long-lived pool that is subjected to the selective lysosomal degradation pathway. In the presence of antioxidants, the half-life of the long-lived pool of IκB is significantly increased. Thus, the production of intracellular reactive oxygen species during serum starvation may be one of the mechanisms mediating IκB degradation in lysosomes. This selective pathway of lysosomal degradation of IκB is physiologically important since prolonged serum deprivation results in an increase in the nuclear activity of nuclear factor κ B. In addition, the response of nuclear factor κ B to several stimuli increases when this lysosomal pathway of proteolysis is activated.