26 resultados para Dehydration, Dehydroxylation, High-Resolution Thermogravimetric Analysis, Hydrotalcite, Iowaite


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used a novel site-specific protein-DNA photocrosslinking procedure to define the positions of polypeptide chains relative to promoter DNA in binary, ternary, and quaternary complexes containing human TATA-binding protein, human or yeast transcription factor IIA (TFIIA), human transcription factor IIB (TFIIB), and promoter DNA. The results indicate that TFIIA and TFIIB make more extensive interactions with promoter DNA than previously anticipated. TATA-binding protein, TFIIA, and TFIIB surround promoter DNA for two turns of DNA helix and thus may form a "cylindrical clamp" effectively topologically linked to promoter DNA. Our results have implications for the energetics, DNA-sequence-specificity, and pathway of assembly of eukaryotic transcription complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a novel high resolution DNA based typing approach for HLA class I alleles, which identifies the recombinational motifs present in exons 2 and 3 of the HLA class I genes. Unique identification patterns for 201 known HLA-A, HLA-B, and HLA-Cw alleles were generated by the use of only 40 probes, which were targeted at these common motifs. The unambiguous identification of the alleles was achieved by the development of a new and powerful allelic separation technique that allows isolation of single alleles after amplification. To validate the method, we have used locus-specific primers to amplify exons 2 and 3 of HLA-A, HLA-B, and HLA-Cw loci from 22 heterozygous and 41 homozygous cell lines. After amplification, the allelic fragments from each locus were separated, blotted, and hybridized with the 40 probes. In all cases, the allelic products could be separated and 81 different class I alleles, 33 HLA-A, 30 HLA-B, and 18 HLA-Cw, were identified according to the predicted probe hybridization patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe an integrated approach to large-scale physical mapping using an Alu-PCR hybridization screening strategy in conjunction with direct PCR-based screening to construct a continuous yeast artificial chromosome map covering >20 mb in human chromosome 3, bands p14-p21, composed of 205 loci, connected by 480 yeast artificial chromosomes, with average interlocus distance of approximately equal to 100 kb. We observe an inverse distribution of Alu-PCR and (CA)n markers. These results suggest that the two screening methods may be complementary and demonstrate the utility of Alu-PCR hybridization screening in the closure of high-resolution human physical maps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of a highly reliable physical map with landmark sites spaced an average of 100 kbp apart has been a central goal of the Human Genome Project. We have approached the physical mapping of human chromosome 11 with this goal as a primary target. We have focused on strategies that would utilize yeast artificial chromosome (YAC) technology, thus permitting long-range coverage of hundreds of kilobases of genomic DNA, yet we sought to minimize the ambiguities inherent in the use of this technology, particularly the occurrence of chimeric genomic DNA clones. This was achieved through the development of a chromosome 11-specific YAC library from a human somatic cell hybrid line that has retained chromosome 11 as its sole human component.To maximize the efficiency of YAC contig assembly and extension, we have employed an Alu-PCR-based hybridization screening system. This system eliminates many of the more costly and time-consuming steps associated with sequence tagged site content mapping such as sequencing, primer production, and hierarchical screening, resulting in greater efficiency with increased throughput and reduced cost. Using these approaches, we have achieved YAC coverage for >90% of human chromosome 11, with an average intermarker distance of <100 kbp. Cytogenetic localization has been determined for each contig by fluorescent in situ hybridization and/or sequence tagged site content. The YAC contigs that we have generated should provide a robust framework to move forward to sequence-ready templates for the sequencing efforts of the Human Genome Project as well as more focused positional cloning on chromosome 11.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinesin is a molecular motor that transports organelles along microtubules. This enzyme has two identical 7-nm-long motor domains, which it uses to move between consecutive tubulin binding sites spaced 8 nm apart along a microtubular protofilament. The molecular mechanism of this movement, which remains to be elucidated, may be common to all families of motor proteins. In this study, a high-resolution optical-trap microscope was used to measure directly the magnitude of abrupt displacements produced by a single kinesin molecule transporting a microscopic bead. The distribution of magnitudes reveals that kinesin not only undergoes discrete 8-nm movements, in agreement with previous work [Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S.M. (1993) Nature (London) 365, 721-727], but also frequently exhibits smaller movements of about 5 nm. A possible explanation for these unexpected smaller movements is that kinesin's movement from one dimer to the next along a protofilament involves at least two distinct events in the mechanical cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various types of physical mapping data were assembled by developing a set of computer programs (Integrated Mapping Package) to derive a detailed, annotated map of a 4-Mb region of human chromosome 13 that includes the BRCA2 locus. The final assembly consists of a yeast artificial chromosome (YAC) contig with 42 members spanning the 13q12-13 region and aligned contigs of 399 cosmids established by cross-hybridization between the cosmids, which were selected from a chromosome 13-specific cosmid library using inter-Alu PCR probes from the YACs. The end sequences of 60 cosmids spaced nearly evenly across the map were used to generate sequence-tagged sites (STSs), which were mapped to the YACs by PCR. A contig framework was generated by STS content mapping, and the map was assembled on this scaffold. Additional annotation was provided by 72 expressed sequences and 10 genetic markers that were positioned on the map by hybridization to cosmids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amino acid sequencing by recombinant DNA technology, although dramatically useful, is subject to base reading errors, is indirect, and is insensitive to posttranslational processing. Mass spectrometry techniques can provide molecular weight data from even relatively large proteins for such cDNA sequences and can serve as a check of an enzyme's purity and sequence integrity. Multiply-charged ions from electrospray ionization can be dissociated to yield structural information by tandem mass spectrometry, providing a second method for gaining additional confidence in primary sequence confirmation. Here, accurate (+/- 1 Da) molecular weight and molecular ion dissociation information for human muscle and brain creatine kinases has been obtained by electrospray ionization coupled with Fourier-transform mass spectrometry to help distinguish which of several published amino acid sequences for both enzymes are correct. The results herein are consistent with one published sequence for each isozyme, and the heterogeneity indicated by isoelectric focusing due to 1-Da deamidation changes. This approach appears generally useful for detailed sequence verification of recombinant proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to carry out high-resolution genetic mapping at high throughput in the mouse is a critical rate-limiting step in the generation of genetically anchored contigs in physical mapping projects and the mapping of genetic loci for complex traits. To address this need, we have developed an efficient, high-resolution, large-scale genome mapping system. This system is based on the identification of polymorphic DNA sites between mouse strains by using interspersed repetitive sequence (IRS) PCR. Individual cloned IRS PCR products are hybridized to a DNA array of IRS PCR products derived from the DNA of individual mice segregating DNA sequences from the two parent strains. Since gel electrophoresis is not required, large numbers of samples can be genotyped in parallel. By using this approach, we have mapped > 450 polymorphic probes with filters containing the DNA of up to 517 backcross mice, potentially allowing resolution of 0.14 centimorgan. This approach also carries the potential for a high degree of efficiency in the integration of physical and genetic maps, since pooled DNAs representing libraries of yeast artificial chromosomes or other physical representations of the mouse genome can be addressed by hybridization of filter representations of the IRS PCR products of such libraries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a reverse-transcriptase PCR-based protocol suitable for efficient expression analysis of multigene families is presented. The method combines restriction fragment length polymorphism (RFLP) technology with a gene family-specific version of mRNA differential display and hence is called "RFLP-coupled domain-directed differential display. "With this method, expression of all members of a multigene family at many different developmental stages, in diverse tissues and even in different organisms, can be displayed on one gel. Moreover, bands of interest, representing gene family members, are directly accessible to sequence analysis, without the need for subcloning. The method thus enables a detailed, high-resolution expression analysis of known gene family members as well as the identification and characterization of new ones. Here the technique was used to analyze differential expression of MADS-box genes in male and female inflorescences of maize (Zea mays ssp. mays). Six different MADS-box genes could be identified, being either specifically expressed in the female sex or preferentially expressed in male or female inflorescences, respectively. Other possible applications of the method are discussed.