198 resultados para DROSOPHILA
Resumo:
The ability to tolerate a low-O2 environment varies widely among species in the animal kingdom. Some animals, such as Drosophila melanogaster, can tolerate anoxia for prolonged periods without apparent tissue injury. To determine the genetic basis of the cellular responses to low O2, we performed a genetic screen in Drosophila to identify loci that are responsible for anoxia resistance. Four X-linked, anoxia-sensitive mutants belonging to three complementation groups were isolated after screening more than 10,000 mutagenized flies. The identified recessive and dominant mutations showed marked delay in recovery from O2 deprivation. In addition, electrophysiologic studies demonstrated that polysynaptic transmission in the central nervous system of the mutant flies was abnormally long during recovery from anoxia. These studies show that anoxic tolerance can be genetically dissected.
Resumo:
In the majority of cervical cancers, DNAs of high-risk mucosotpropic human papillomaviruses (HPVs), such as type 16, are maintained so as to express two viral proteins, E6 and E7, suggesting an essential importance to carcinogenesis. The high-risk HPV E6 proteins are known to inactivate p53 tumor suppressor protein but appear to have an additional, molecularly unknown function(s). In this study, we demonstrate that these E6 proteins can bind to the second PDZ domain of the human homologue of the Drosophila discs large tumor suppressor protein (hDLG) through their C-terminal XS/TXV/L (where X represents any amino acid, S/T serine or threonine, and V/L valine or leucine) motif. This finding is similar to the interaction between the adenomatous polyposis coli gene product and hDLG. E6 mutants losing the ability to bind to hDLG are no longer able to induce E6-dependent transformation of rodent cells. These results suggest an intriguing possibility that interaction between the E6 protein and hDLG or other PDZ domain-containing proteins could be an underlying mechanism in the development of HPV-associated cancers.
Resumo:
The Drosophila retinal degeneration C (rdgC) gene encodes an unusual protein serine/threonine phosphatase in that it contains at least two EF-hand motifs at its carboxy terminus. By a combination of large-scale sequencing of human retina cDNA clones and searches of expressed sequence tag and genomic DNA databases, we have identified two sequences in mammals [Protein Phosphatase with EF-hands-1 and 2 (PPEF-1 and PPEF-2)] and one in Caenorhabditis elegans (PPEF) that closely resemble rdgC. In the adult, PPEF-2 is expressed specifically in retinal rod photoreceptors and the pineal. In the retina, several isoforms of PPEF-2 are predicted to arise from differential splicing. The isoform that most closely resembles rdgC is localized to rod inner segments. Together with the recently described localization of PPEF-1 transcripts to primary somatosensory neurons and inner ear cells in the developing mouse, these data suggest that the PPEF family of protein serine/threonine phosphatases plays a specific and conserved role in diverse sensory neurons.
Resumo:
The human transcription factor B-TFIID is comprised of TATA-binding protein (TBP) in complex with one TBP-associated factor (TAF) of 170 kDa. We report the isolation of the cDNA for TAFII170. By cofractionation and coprecipitation experiments, we show that the protein encoded by the cDNA encodes the TAF subunit of B-TFIID. Recombinant TAFII170 has (d)ATPase activity. Inspection of its primary structure reveals a striking homology with genes of other organisms, yeast MOT1, and Drosophila moira, which belongs to the Trithorax group. Both homologs were isolated in genetic screens as global regulators of pol II transcription. This supports our classification of B-TFIID as a pol II transcription factor and suggests that specific TBP–TAF complexes perform distinct functions during development.
Resumo:
The cytoplasmic region of Fas, a mammalian death factor receptor, shares a limited homology with reaper, an apoptosis-inducing protein in Drosophila. Expression of either the Fas cytoplasmic region (FasC) or of reaper in Drosophila cells caused cell death. The death process induced by FasC or reaper was inhibited by crmA or p35, suggesting that its death process is mediated by caspase-like proteases. Both Ac-YVAD aldehyde and Ac-DEVD aldehyde, specific inhibitors of caspase 1- and caspase 3-like proteases, respectively, inhibited the FasC-induced death of Drosophila cells. However, the cell death induced by reaper was inhibited by Ac-DEVD aldehyde, but not by Ac-YVAD aldehyde. A caspase 1-like protease activity that preferentially recognizes the YVAD sequence gradually increased in the cytosolic fraction of the FasC-activated cells, whereas the caspase 3-like protease activity recognizing the DEVD sequence was observed in the reaper-activated cells. Partial purification and biochemical characterization of the proteases indicated that there are at least three distinct caspase-like proteases in Drosophila cells, which are differentially activated by FasC and reaper. The conservation of the Fas-death signaling pathway in Drosophila cells, which is distinct from that for reaper, may indicate that cell death in Drosophila is controlled not only by the reaper suicide gene, but also by a Fas-like killer gene.
Resumo:
Response to the steroid hormone ecdysone in Drosophila is controlled by genetic regulatory hierarchies that include eight members of the nuclear receptor protein family. The DHR3 gene, located within the 46F early-late ecdysone-inducible chromosome puff, encodes an orphan nuclear receptor that recently has been shown to exert both positive and negative regulatory effects in the ecdysone-induced genetic hierarchies at metamorphosis. We used a reverse genetics approach to identify 11 DHR3 mutants from a pool of lethal mutations in the 46F region on the second chromosome. Two DHR3 mutations result in amino acid substitutions within the conserved DNA binding domain. Analysis of DHR3 mutants reveals that DHR3 function is required to complete embryogenesis. All DHR3 alleles examined result in nervous system defects in the embryo.
Resumo:
The phosphotyrosine-binding (PTB) domain is a recently identified protein module that has been characterized as binding to phosphopeptides containing an NPXpY motif (X = any amino acid). We describe here a novel peptide sequence recognized by the PTB domain from Drosophila Numb (dNumb), a protein involved in cell fate determination and asymmetric cell division during the development of the Drosophila nervous system. Using a Tyr-oriented peptide library to screen for ligands, the dNumb PTB domain was found to bind selectively to peptides containing a YIGPYφ motif (φ represents a hydrophobic residue). A synthetic peptide containing this sequence bound specifically to the isolated dNumb PTB domain in solution with a dissociation constant (Kd) of 5.78 ± 0.74 μM. Interestingly, the affinity of this peptide for the dNumb PTB domain was increased (Kd = 1.41 ± 0.10 μM) when the second tyrosine in the sequence was phosphorylated. Amino acid substitution studies of the phosphopeptide demonstrated that a core motif of sequence GP(p)Y is required for high-affinity binding to the dNumb PTB domain. Nuclear magnetic resonance experiments performed on isotopically labeled protein complexed with either Tyr- or pTyr-containing peptides suggest that the same set of amino acids in the dNumb PTB domain is involved in binding both phosphorylated and nonphosphorylated forms of the peptide. The in vitro selectivity of the dNumb PTB domain is therefore markedly different from those of the Shc and IRS-1 PTB domains, in that it interacts preferentially with a GP(p)Y motif, rather than NPXpY, and does not absolutely require ligand phosphorylation for binding. Our results suggest that the PTB domain is a versatile protein module, capable of exhibiting varied binding specificities.
Resumo:
The protein Sex-lethal (SXL) controls pre-mRNA splicing of two genes involved in Drosophila sex determination: transformer (tra) and the Sxl gene itself. Previous in vitro results indicated that SXL antagonizes the general splicing factor U2AF65 to regulate splicing of tra. In this report, we have used transgenic flies expressing chimeric proteins between SXL and the effector domain of U2AF65 to study the mechanisms of splicing regulation by SXL in vivo. Conferring U2AF activity to SXL relieves its inhibitory activity on tra splicing but not on Sxl splicing. Therefore, antagonizing U2AF65 can explain tra splicing regulation both in vitro and in vivo, but this mechanism cannot explain splicing regulation of Sxl pre-mRNA. These results are a direct proof that Sxl, the master regulatory gene in sex determination, has multiple and separable activities in the regulation of pre-mRNA splicing.
Resumo:
One of the rare examples of a single major gene underlying a naturally occurring behavioral polymorphism is the foraging locus of Drosophila melanogaster. Larvae with the rover allele, forR, have significantly longer foraging path lengths on a yeast paste than do those homozygous for the sitter allele, fors. These variants do not differ in general activity in the absence of food. The evolutionary significance of this polymorphism is not as yet understood. Here we examine the effect of high and low animal rearing densities on the larval foraging path-length phenotype and show that density-dependent natural selection produces changes in this trait. In three unrelated base populations the long path (rover) phenotype was selected for under high-density rearing conditions, whereas the short path (sitter) phenotype was selected for under low-density conditions. Genetic crosses suggested that these changes resulted from alterations in the frequency of the fors allele in the low-density-selected lines. Further experiments showed that density-dependent selection during the larval stage rather than the adult stage of development was sufficient to explain these results. Density-dependent mechanisms may be sufficient to maintain variation in rover and sitter behavior in laboratory populations.
Resumo:
It has long been suspected that proteolytic activity associated with advancing growth cones may be required for axon extension. We have isolated mutations in the kuzbanian (kuz) gene, which is expressed in the nervous system and encodes a putative zinc metalloprotease with a disintegrin domain. Drosophila embryos with loss-of-function mutations in kuz have dramatic defects in the development of central nervous system axon pathways, with many axons stalling and failing to extend through the nerve cord. This phenotype is rescued by panneural expression of kuz mRNA in the embryo. These results show that the Kuz metalloprotease is required for axon extension, suggesting a requirement for proteolytic activity at the growth cone surface.
Resumo:
A K+ channel gene has been cloned from Drosophila melanogaster by complementation in Saccharomyces cerevisiae cells defective for K+ uptake. Naturally expressed in the neuromuscular tissues of adult flies, this gene confers K+ transport capacity on yeast cells when heterologously expressed. In Xenopus laevis oocytes, expression yields an ungated K+-selective current whose attributes resemble the “leak” conductance thought to mediate the resting potential of vertebrate myelinated neurons but whose molecular nature has long remained elusive. The predicted protein has two pore (P) domains and four membrane-spanning helices and is a member of a newly recognized K+ channel family. Expression of the channel in flies and yeast cells makes feasible studies of structure and in vivo function using genetic approaches that are not possible in higher animals.
Resumo:
Behavioral and electrophysiological studies on mutants defective in the Drosophila inebriated (ine) gene demonstrated increased excitability of the motor neuron. In this paper, we describe the cloning and sequence analysis of ine. Mutations in ine were localized on cloned DNA by restriction mapping and restriction fragment length polymorphism (RFLP) mapping of ine mutants. DNA from the ine region was then used to isolate an ine cDNA. In situ hybridization of ine transcripts to developing embryos revealed expression of this gene in several cell types, including the posterior hindgut, Malpighian tubules, anal plate, garland cells, and a subset of cells in the central nervous system. The ine cDNA contains an open reading frame of 658 amino acids with a high degree of sequence similarity to members of the Na+/Cl−-dependent neurotransmitter transporter family. Members of this family catalyze the rapid reuptake of neurotransmitters released into the synapse and thereby play key roles in controlling neuronal function. We conclude that ine mutations cause increased excitability of the Drosophila motor neuron by causing the defective reuptake of the substrate neurotransmitter of the ine transporter and thus overstimulation of the motor neuron by this neurotransmitter. From this observation comes a unique opportunity to perform a genetic dissection of the regulation of excitability of the Drosophila motor neuron.
Genghis Khan (Gek) as a putative effector for Drosophila Cdc42 and regulator of actin polymerization
Resumo:
The small GTPases Cdc42 and Rac regulate a variety of biological processes, including actin polymerization, cell proliferation, and JNK/mitogen-activated protein kinase activation, conceivably via distinct effectors. Whereas the effector for mitogen-activated protein kinase activation appears to be p65PAK, the identity of effector(s) for actin polymerization remains unclear. We have found a putative effector for Drosophila Cdc42, Genghis Khan (Gek), which binds to Dcdc42 in a GTP-dependent and effector domain-dependent manner. Gek contains a predicted serine/threonine kinase catalytic domain that is 63% identical to human myotonic dystrophy protein kinase and has protein kinase activities. It also possesses a large coiled-coil domain, a putative phorbol ester binding domain, a pleckstrin homology domain, and a Cdc42 binding consensus sequence that is required for its binding to Dcdc42. To study the in vivo function of gek, we generated mutations in the Drosophila gek locus. Egg chambers homozygous for gek mutations exhibit abnormal accumulation of F-actin and are defective in producing fertilized eggs. These phenotypes can be rescued by a wild-type gek transgene. Our results suggest that this multidomain protein kinase is an effector for the regulation of actin polymerization by Cdc42.
Resumo:
Drosophila Numb is a membrane associated protein of 557 amino acids (aa) that localizes asymmetrically into a cortical crescent in mitotic neural precursor cells and segregates into one of the daughter cells, where it is required for correct cell fate specification. We demonstrate here that asymmetric localization but not membrane localization of Numb in Drosophila embryos is inhibited by latrunculin A, an inhibitor of actin assembly. We also show that deletion of either the first 41 aa or aa 41–118 of Numb eliminates both localization to the cell membrane and asymmetric localization during mitosis, whereas C-terminal deletions or deletions of central portions of Numb do not affect its subcellular localization. Fusion of the first 76 or the first 119 aa of Numb to β-galactosidase results in a fusion protein that localizes to the cell membrane, but fails to localize asymmetrically during mitosis. In contrast, a fusion protein containing the first 227 aa of Numb and β-galactosidase localizes asymmetrically during mitosis and segregates into the same daughter cell as the endogenous Numb protein, demonstrating that the first 227 aa of the Numb protein are sufficient for asymmetric localization.
Resumo:
The parameters of the spontaneous deleterious mutation process remain poorly known, despite their importance. Here, we report the results of a mutation accumulation experiment performed on panmictic populations of Drosophila melanogaster without any genetic manipulations. Two experimental populations were kept for 30 generations under relaxed natural selection. Each generation, 100 pairs were formed randomly, and every fecund pair contributed a son and a daughter to the next generation. Comparison with two controls, one cryopreserved and the other kept as the experimental populations but with long generation time, showed that the number of surviving offspring per female declined by 0.2% and 2.0% per generation under benign and harsh, competitive conditions, respectively. Thus, the mutational pressure on fitness may be strong and depends critically on the conditions under which fitness is assayed.