66 resultados para Culture, suicide, and the human condition
Resumo:
A cross-sectional survey was made in 56 exceptionally healthy males, ranging in age from 20 to 84 years. Measurements were made of selected steroidal components and peptidic hormones in blood serum, and cognitive and physical tests were performed. Of those blood serum variables that gave highly significant negative correlations with age (r > 0.6), bioavailable testosterone (BT), dehydroepiandrosterone sulfate (DHEAS), and the ratio of insulin-like growth factor 1 (IGF-1) to growth hormone (GH) showed a stepwise pattern of age-related changes most closely resembling those of the age steps themselves. Of these, BT correlated best with significantly age-correlated cognitive and physical measures. Because DHEAS correlated well with BT and considerably less well than BT with the cognitive and physical measures, it seems likely that BT and/or substances to which BT gives rise in tissues play a more direct role in whatever processes are rate-limiting in the functions measured and that DHEAS relates more indirectly to these functions. The high correlation of IGF-1/GH with age, its relatively low correlation with BT, and the patterns of correlations of IGF-1/GH and BT with significantly age-correlated cognitive and physical measures suggest that the GHIGF-1 axis and BT play independent roles in affecting these functions. Serial determinations made after oral ingestion of pregnenolone and data from the literature suggest there is interdependence of steroid metabolic systems with those operational in control of interrelations in the GHIGF-1 axis. Longitudinal concurrent measurements of serum levels of BT, DHEAS, and IGF-1/GH together with detailed studies of their correlations with age-correlated functional measures may be useful in detecting early age-related dysregulations and may be helpful in devising ameliorative approaches.
Resumo:
Within hours after the ingestion of a blood meal, the mosquito midgut epithelium synthesizes a chitinous sac, the peritrophic matrix. Plasmodium ookinetes traverse the peritrophic matrix while escaping the mosquito midgut. Chitinases (EC 3.2.1.14) are critical for parasite invasion of the midgut: the presence of the chitinase inhibitor, allosamidin, in an infectious blood meal prevents oocyst development. A chitinase gene, PgCHT1, recently has been identified in the avian malaria parasite P. gallinaceum. We used the sequence of PgCHT1 to identify a P. falciparum chitinase gene, PfCHT1, in the P. falciparum genome database. PfCHT1 differs from PgCHT1 in that the P. falciparum gene lacks proenzyme and chitin-binding domains. PfCHT1 was expressed as an active recombinant enzyme in Escherichia coli. PfCHT1 shares with PgCHT1 a substrate preference unique to Plasmodium chitinases: the enzymes cleave tri- and tetramers of GlcNAc from penta- and hexameric oligomers and are unable to cleave smaller native chitin oligosaccharides. The pH activity profile of PfCHT1 and its IC50 (40 nM) to allosamidin are distinct from endochitinase activities secreted by P. gallinaceum ookinetes. Homology modeling predicts that PgCHT1 has a novel pocket in the catalytic active site that PfCHT1 lacks, which may explain the differential sensitivity of PfCHT1 and PgCHT1 to allosamidin. PfCHT1 may be the ortholog of a second, as yet unidentified, chitinase gene of P. gallinaceum. These results may allow us to develop novel strategies of blocking human malaria transmission based on interfering with P. falciparum chitinase.
Resumo:
The emergence of modern humans in the Late Pleistocene, whatever its phylogenetic history, was characterized by a series of behaviorally important shifts reflected in aspects of human hard tissue biology and the archeological record. To elucidate these shifts further, diaphyseal cross-sectional morphology was analyzed by using cross-sectional areas and second moments of area of the mid-distal humerus and midshaft femur. The humeral diaphysis indicates a gradual reduction in habitual load levels from Eurasian late archaic, to Early Upper Paleolithic early modern, to Middle Upper Paleolithic early modern hominids, with the Levantine Middle Paleolithic early modern humans being a gracile anomalous outlier. The femoral diaphysis, once variation in ecogeographically patterned body proportions is taken into account, indicates no changes across the pre-30,000 years B.P. samples in habitual locomotor load levels, followed by a modest decrease through the Middle Upper Paleolithic.
Resumo:
We previously provided evidence that the protein encoded by the highly conserved skb1 gene is a putative regulator of Shk1, a p21Cdc42/Rac-activated kinase (PAK) homolog in the fission yeast Schizosaccharomyces pombe. skb1 null mutants are viable and competent for mating but less elongate than wild-type S. pombe cells, whereas cells that overexpress skb1 are hyperelongated. These phenotypes suggest a possible role for Skb1 as a mitotic inhibitor. Here we show genetic interactions of both skb1 and shk1 with genes encoding key mitotic regulators in S. pombe. Our results indicate that Skb1 negatively regulates mitosis by a mechanism that is independent of the Cdc2-activating phosphatase Cdc25 but that is at least partially dependent on Shk1 and the Cdc2 inhibitory kinase Wee1. We provide biochemical evidence for association of Skb1 and Shk1 with Cdc2 in S. pombe, suggesting that Skb1 and Shk1 inhibit mitosis through interaction with the Cdc2 complex, rather than by an indirect mechanism. These results provide evidence of a previously undescribed role for PAK-related protein kinases as mitotic inhibitors. We also describe the cloning of a human homolog of skb1, SKB1Hs, and show that it can functionally replace skb1 in S. pombe. Thus, the molecular functions of Skb1-related proteins have likely been substantially conserved through evolution.
Resumo:
Myostatin, a member of the transforming growth factor- superfamily, is a genetic determinant of skeletal muscle growth. Mice and cattle with inactivating mutations of myostatin have marked muscle hypertrophy. However, it is not known whether myostatin regulates skeletal muscle growth in adult men and whether increased myostatin expression contributes to wasting in chronic illness. We examined the hypothesis that myostatin expression correlates inversely with fat-free mass in humans and that increased expression of the myostatin gene is associated with weight loss in men with AIDS wasting syndrome. We therefore cloned the human myostatin gene and cDNA and examined the genes expression in the skeletal muscle and serum of healthy and HIV-infected men. The myostatin gene comprises three exons and two introns, maps to chromosomal region 2q33.2, has three putative transcription initiation sites, and is transcribed as a 3.1-kb mRNA species that encodes a 375-aa precursor protein. Myostatin is expressed uniquely in the human skeletal muscle as a 26-kDa mature glycoprotein (myostatin-immunoreactive protein) and secreted into the plasma. Myostatin immunoreactivity is detectable in human skeletal muscle in both type 1 and 2 fibers. The serum and intramuscular concentrations of myostatin-immunoreactive protein are increased in HIV-infected men with weight loss compared with healthy men and correlate inversely with fat-free mass index. These data support the hypothesis that myostatin is an attenuator of skeletal muscle growth in adult men and contributes to muscle wasting in HIV-infected men.
Resumo:
High-frequency reversible changes in colony morphology were observed in three strains of Cryptococcus neoformans. For one strain (SB4, serotype A), this process produced three colony types: smooth (S), wrinkled (W), and serrated (C). The frequency of switching between colony types varied for the individual colony transitions and was as high as 103. Mice infected with colony type W died faster than those infected with other colony types. The rat inflammatory response to infection with colony types S, W, and C was C > S > W and ranged from intense granulomatous inflammation with caseous necrosis for infection with type C to minimal inflammation for infection with type W. Infection with the various colony types was associated with different antibody responses to cryptococcal proteins in rats. Analysis of cellular characteristics revealed differences between the three colony types. High-frequency changes in colony morphology were also observed in two additional strains of C. neoformans. For one strain (24067A, serotype D) the switching occurred between smooth and wrinkled colonies. For the other strain (J32A, serotype A), the switching occurred between mucoid and nonmucoid colonies. The findings indicate that C. neoformans undergoes phenotypic switching and that this process can affect virulence and host inflammatory and immune responses. Phenotypic switching may play a role in the ability of this fungus to escape host defenses and establish chronic infections.
Resumo:
T cell receptor (TCR) and gene segments are organized within a single genetic locus but are differentially regulated during T cell development. An enhancer-blocking element (BEAD-1, for blocking element alpha/delta 1) was localized to a 2.0-kb region 3 of TCR gene segments and 5 of TCR joining gene segments within this locus. BEAD-1 blocked the ability of the TCR enhancer (E) to activate a promoter when located between the two in a chromatin-integrated construct. We propose that BEAD-1 functions as a boundary that separates the TCR / locus into distinct regulatory domains controlled by E and the TCR enhancer, and that it prevents E from opening the chromatin of the TCR joining gene segments for VDJ recombination at an early stage of T cell development.
Resumo:
Etheno adducts in DNA arise from multiple endogenous and exogenous sources. Of these adducts we have reported that, 1,N6-ethenoadenine (A) and 3,N4-ethenocytosine (C) are removed from DNA by two separate DNA glycosylases. We later confirmed these results by using a gene knockout mouse lacking alkylpurine-DNA-N-glycosylase, which excises A. The present work is directed toward identifying and purifying the human glycosylase activity releasing C. HeLa cells were subjected to multiple steps of column chromatography, including two C-DNA affinity columns, which resulted in >1,000-fold purification. Isolation and renaturation of the protein from SDS/polyacrylamide gel showed that the C activity resides in a 55-kDa polypeptide. This apparent molecular mass is approximately the same as reported for the human G/T mismatch thymine-DNA glycosylase. This latter activity copurified to the final column step and was present in the isolated protein band having C-DNA glycosylase activity. In addition, oligonucleotides containing CG or G/T(U), could compete for C protein binding, further indicating that the C-DNA glycosylase is specific for both types of substrates in recognition. The same substrate specificity for C also was observed in a recombinant G/T mismatch DNA glycosylase from the thermophilic bacterium, Methanobacterium thermoautotrophicum THF.
Resumo:
Potent and selective active-site-spanning inhibitors have been designed for cathepsin K, a cysteine protease unique to osteoclasts. They act by mechanisms that involve tight binding intermediates, potentially on a hydrolytic pathway. X-ray crystallographic, MS, NMR spectroscopic, and kinetic studies of the mechanisms of inhibition indicate that different intermediates or transition states are being represented that are dependent on the conditions of measurement and the specific groups flanking the carbonyl in the inhibitor. The species observed crystallographically are most consistent with tetrahedral intermediates that may be close approximations of those that occur during substrate hydrolysis. Initial kinetic studies suggest the possibility of irreversible and reversible active-site modification. Representative inhibitors have demonstrated antiresorptive activity both in vitro and in vivo and therefore are promising leads for therapeutic agents for the treatment of osteoporosis. Expansion of these inhibitor concepts can be envisioned for the many other cysteine proteases implicated for therapeutic intervention.
Resumo:
Sequences of the variable heavy (VH) and (V) domains of Ig structures were divided into 21 fragments that correspond to strands, loops, or parts of these structural units of the variable domains. Amino acid sequences of fragments (termed words) were collected from the 1,172 human heavy and 668 human chains available in the Kabat database. Statistical analysis of words of 17 fragments was performed (fragments that comprise the complementary determining regions fragments will not be discussed in this paper). The number of different words (those with different residues in at least one position) ranged, for various fragments, from 11 to 75 in the chains, and from 23 to 189 in the heavy chains. The main result of this study is that very few keywords, or main patterns of words, were necessary to describe over 90% of the sequences (no more than two keywords per fragment in the and no more than five per fragment in the heavy chains). No identical keywords were found for different fragments of the variable domains. Keywords of aligned fragments of the VH and V domains were different in all but two instances. Thus, knowing the keywords, one can determine whether any given small part of a sequence belongs to a heavy or chain and predict its precise localization in the sequence. In addition, by using all of the keywords obtained through analysis of the Kabat database, it was possible to describe completely the sequences of the human VH and V germ-line segments.
Resumo:
The region of human chromosome 22q11 is prone to rearrangements. The resulting chromosomal abnormalities are involved in Velo-cardio-facial and DiGeorge syndromes (VCFS and DGS) (deletions), cat eye syndrome (duplications), and certain types of tumors (translocations). As a prelude to the development of mouse models for VCFS/DGS by generating targeted deletions in the mouse genome, we examined the organization of genes from human chromosome 22q11 in the mouse. Using genetic linkage analysis and detailed physical mapping, we show that genes from a relatively small region of human 22q11 are distributed on three mouse chromosomes (MMU6, MMU10, and MMU16). Furthermore, although the region corresponding to about 2.5 megabases of the VCFS/DGS critical region is located on mouse chromosome 16, the relative organization of the region is quite different from that in humans. Our results show that the instability of the 22q11 region is not restricted to humans but may have been present throughout evolution. The results also underscore the importance of detailed comparative mapping of genes in mice and humans as a prerequisite for the development of mouse models of human diseases involving chromosomal rearrangements.
Resumo:
We reported previously that a conformation-specific antibody, Ab P2, to a 16-amino acid peptide (Glu-Gly-Tyr-Lys-Lys-Lys-Tyr-Gln-Gln-Val-Asp-Glu-Glu-Phe-Leu-Arg) of the cytoplasmic domain of the -type platelet-derived growth factor receptor also recognizes the epidermal growth factor (EGF) receptor. Although the antibody is not directed to phosphotyrosine, it recognizes in immunoprecipitation the activated and hence phosphorylated form of both receptors. In P2 peptide, there are two tripeptide sequences, Asp-Glu-Glu and Tyr-Gln-Gln, that are also present in the EGF receptor. Our present studies using either EGF receptor C-terminal deletion mutants or point mutations (TyrPhe) and our previous studies on antibody inhibition by P2-derived peptides suggest that Gln-Gln in combination with Asp-Glu-Glu forms a high-affinity complex with Ab P2 and that such complex formation is dependent on tyrosine phosphorylation. Of the five phosphate acceptor sites in the EGF receptor, clustered in the extreme C-terminal tail, phosphorylation of three tyrosine residues (992, 1068, and 1086) located between Asp-Glu-Glu and Gln-Gln is necessary for Ab P2 binding. In contrast, the acceptor sites Tyr 1173 and 1148 play no role in the conformation change. Asp-Glu-Glu and Gln-Gln are located 169 amino acids apart, and it is highly likely that the interactions among three negatively charged phosphotyrosine residues in the receptor C terminus may result in the bending of the peptide chain in such a way that these two peptides come close to each other to form an antibody-binding site. Such a possibility is also supported by our finding that receptor dephosphorylation results in complete loss of Ab P2binding activity. In conclusion, we have identified a domain within the cytoplasmic part of the EGF receptor whose conformation is altered by receptor phosphorylation; furthermore, we have identified the tyrosine residues that positively regulate this conformation.
Resumo:
The recessive mouse mutant Mpv17 is characterized by the development of early-onset glomerulosclerosis, concomitant hypertension, and structural alterations of the inner ear. The primary cause of the disease is the loss of function of the Mpv17 protein, a peroxisomal gene product involved in reactive oxygen metabolism. In our search of a common mediator exerting effects on several aspects of the phenotype, we discovered that the absence of the Mpv17 gene product causes a strong increase in matrix metalloproteinase 2 (MMP-2) expression. This was seen in the kidney and cochlea of Mpv17-negative mice as well as in tissue culture cells derived from these animals. When these cells were transfected with the human Mpv17 homolog, an inverse causal relationship between Mpv17 and MMP-2 expression was established. These results indicate that the Mpv17 protein plays a crucial role in the regulation of MMP-2 and suggest that enhanced MMP-2 expression might mediate the mechanisms leading to glomerulosclerosis, inner ear disease, and hypertension in this model.
Resumo:
Mitogen-activated protein (MAP) kinases are pivotal components of eukaryotic signaling cascades. Phosphorylation of tyrosine and threonine residues activates MAP kinases, but either dual-specificity or monospecificity phosphatases can inactivate them. The Candida albicans CPP1 gene, a structural member of the VH1 family of dual- specificity phosphatases, was previously cloned by its ability to block the pheromone response MAP kinase cascade in Saccharomyces cerevisiae. Cpp1p inactivated mammalian MAP kinases in vitro and acted as a tyrosine-specific enzyme. In C. albicans a MAP kinase cascade can trigger the transition from the budding yeast form to a more invasive filamentous form. Disruption of the CPP1 gene in C. albicans derepressed the yeast to hyphal transition at ambient temperatures, on solid surfaces. A hyphal growth rate defect under physiological conditions in vitro was also observed and could explain a reduction in virulence associated with reduced fungal burden in the kidneys seen in a systemic mouse model. A hyper-hyphal pathway may thus have some detrimental effects on C. albicans cells. Disruption of the MAP kinase homologue CEK1 suppressed the morphological effects of the CPP1 disruption in C. albicans. The results presented here demonstrate the biological importance of a tyrosine phosphatase in cell-fate decisions and virulence in C. albicans.
Resumo:
UVA radiation is the major component of the UV solar spectrum that reaches the earth, and the therapeutic application of UVA radiation is increasing in medicine. Analysis of the cellular effects of UVA radiation has revealed that exposure of human cells to UVA radiation at physiological doses leads to increased gene expression and that this UVA response is primarily mediated through the generation of singlet oxygen. In this study, the mechanisms by which UVA radiation induces transcriptional activation of the human intercellular adhesion molecule 1 (ICAM-1) were examined. UVA radiation was capable of inducing activation of the human ICAM-1 promoter and increasing ICAM-1 mRNA and protein expression. These UVA radiation effects were inhibited by singlet oxygen quenchers, augmented by enhancement of singlet oxygen life-time, and mimicked in unirradiated cells by a singlet oxygen-generating system. UVA radiation as well as singlet oxygen-induced ICAM-1 promoter activation required activation of the transcription factor AP-2. Accordingly, both stimuli activated AP-2, and deletion of the putative AP-2-binding site abrogated ICAM-1 promoter activation in this system. This study identified the AP-2 site as the UVA radiation- and singlet oxygen-responsive element of the human ICAM-1 gene. The capacity of UVA radiation and/or singlet oxygen to induce human gene expression through activation of AP-2 indicates a previously unrecognized role of this transcription factor in the mammalian stress response.