151 resultados para Crossing experiments, Baculoviridae, Yeast Two-Hybrid System, Resistance management, sex-linkage
Resumo:
The C-terminal portion of adenovirus E1A suppresses ras-induced metastasis and tumorigenicity in mammalian cells; however, little is known about the mechanisms by which this occurs. In the simple eukaryote Saccharomyces cerevisiae, Ras2p, the homolog of mammalian h-ras, regulates mitogen-activated protein kinase (MAPK) and cyclic AMP-dependent protein kinase A (cAMP/PKA) signaling pathways to control differentiation from the yeast form to the pseudohyphal form. When expressed in yeast, the C-terminal region of E1A induced pseudohyphal differentiation, and this was independent of both the MAPK and cAMP/PKA signaling pathways. Using the yeast two-hybrid system, we identified an interaction between the C-terminal region of E1A and Yak1p, a yeast dual-specificity serine/threonine protein kinase that functions as a negative regulator of growth. E1A also physically interacts with Dyrk1A and Dyrk1B, two mammalian homologs of Yak1p, and stimulates their kinase activity in vitro. We further demonstrate that Yak1p is required in yeast to mediate pseudohyphal differentiation induced by Ras2p-regulated signaling pathways. However, pseudohyphal differentiation induced by the C-terminal region of E1A is largely independent of Yak1p. These data suggest that mammalian Yak1p-related kinases may be targeted by the E1A oncogene to modulate cell growth.
Resumo:
Drosophila Armadillo and its mammalian homologue β-catenin are scaffolding proteins involved in the assembly of multiprotein complexes with diverse biological roles. They mediate adherens junction assembly, thus determining tissue architecture, and also transduce Wnt/Wingless intercellular signals, which regulate embryonic cell fates and, if inappropriately activated, contribute to tumorigenesis. To learn more about Armadillo/β-catenin's scaffolding function, we examined in detail its interaction with one of its protein targets, cadherin. We utilized two assay systems: the yeast two-hybrid system to study cadherin binding in the absence of Armadillo/β-catenin's other protein partners, and mammalian cells where interactions were assessed in their presence. We found that segments of the cadherin cytoplasmic tail as small as 23 amino acids bind Armadillo or β-catenin in yeast, whereas a slightly longer region is required for binding in mammalian cells. We used mutagenesis to identify critical amino acids required for cadherin interaction with Armadillo/β-catenin. Expression of such short cadherin sequences in mammalian cells did not affect adherens junctions but effectively inhibited β-catenin–mediated signaling. This suggests that the interaction between β-catenin and T cell factor family transcription factors is a sensitive target for disruption, making the use of analogues of these cadherin derivatives a potentially useful means to suppress tumor progression.
Resumo:
With use of the yeast two-hybrid system, the proteins RIP and FADD/MORT1 have been shown to interact with the "death domain" of the Fas receptor. Both of these proteins induce apoptosis in mammalian cells. Using receptor fusion constructs, we provide evidence that the self-association of the death domain of RIP by itself is sufficient to elicit apoptosis. However, both the death domain and the adjacent alpha-helical region of RIP are required for the optimal cell killing induced by the overexpression of this gene. By contrast, FADD's ability to induce cell death does not depend on crosslinking. Furthermore, RIP and FADD appear to activate different apoptotic pathways since RIP is able to induce cell death in a cell line that is resistant to the apoptotic effects of Fas, tumor necrosis factor, and FADD. Consistent with this, a dominant negative mutant of FADD, lacking its N-terminal domain, blocks apoptosis induced by RIP but not by FADD. Since both pathways are blocked by CrmA, the interleukin 1 beta converting enzyme family protease inhibitor, these results suggest that FADD and RIP can act along separable pathways that nonetheless converge on a member of the interleukin 1 beta converting enzyme family of cysteine proteases.
Resumo:
Cyclooxygenases (COXs) 1 and 2 are 72-kDa, intralumenal residents of the endoplasmic reticulum (ER) and nuclear envelope, where they catalyze the rate-limiting steps in the conversion of arachidonate to the physiologically dynamic prostanoids. Recent studies, including the generation of knockout mice, show COX-1 and COX-2 to have biologically distinct roles within cells and organisms. Also apparent is that arachidonate substrate is selectably metabolized by COX-2 after mitogen stimulation in many cells that contain both isoforms. Because COX-1 and COX-2 are highly conserved in all residues needed for catalysis and in their purified forms have almost identical kinetic properties, we have searched for COX-interacting ER proteins that might mediate these unique isoenzymic properties. Using COXs as bait in the yeast two-hybrid system, we identified autoimmunity- and apoptosis-associated nucleobindin (Nuc) as a protein that specifically interacts with both isoenzymes. COX-Nuc binding was substantiated by immunoprecipitation experiments, which showed that COX-1 and, to a lesser extent, COX-2 form complexes with Nuc in vitro. When overexpressed in COS-1 cells, Nuc was found to be extracellularly released. However, when Nuc was co-overexpressed with COX-1 or COX-2, its release was reduced by >80%. This finding suggests that COX isoenzymes participate in the retention of Nuc within the lumen of the ER, where COX may regulate the release of Nuc from the cell. It also identifies Nuc as a potential regulator of COXs through this interaction.
Resumo:
The yeast two-hybrid system was used to isolate a clone from a 17-day-old mouse embryo cDNA library that codes for a novel 812-aa long protein fragment, glucocorticoid receptor-interacting protein 1 (GRIP1), that can interact with the hormone binding domain (HBD) of the glucocorticoid receptor. In the yeast two-hybrid system and in vitro, GRIP1 interacted with the HBDs of the glucocorticoid, estrogen, and androgen receptors in a hormone-regulated manner. When fused to the DNA binding domain of a heterologous protein, the GRIP1 fragment activated a reporter gene containing a suitable enhancer site in yeast cells and in mammalian cells, indicating that GRIP1 contains a transcriptional activation domain. Overexpression of the GRIP1 fragment in mammalian cells interfered with hormone-regulated expression of mouse mammary tumor virus-chloramphenicol acetyltransferase gene and constitutive expression of cytomegalovirus-beta-galactosidase reporter gene, but not constitutive expression from a tRNA gene promoter. This selective squelching activity suggests that GRIM can interact with an essential component of the RNA polymerase II transcription machinery. Finally, while a steroid receptor HBD fused with a GAL4 DNA binding domain did not, by itself, activate transcription of a reporter gene in yeast, coexpression of this fusion protein with GRIP1 strongly activated the reporter gene. Thus, in yeast, GRIP1 can serve as a coactivator, potentiating the transactivation functions in steroid receptor HBDs, possibly by acting as a bridge between HBDs of the receptors and the basal transcription machinery.
Resumo:
Agrobacterium tumefaciens induces crown gall tumors on plants by transferring a nucleoprotein complex, the T-complex, from the bacterium to the plant cell. The T-complex consists of T-DNA, a single-stranded DNA segment of the tumor-inducing plasmid, VirD2, an endonuclease covalently bound to the 5′ end of the T-DNA, and perhaps VirE2, a single-stranded DNA binding protein. The yeast two-hybrid system was used to screen for proteins interacting with VirD2 and VirE2 to identify components in Arabidopsis thaliana that interact with the T-complex. Three VirD2- and two VirE2-interacting proteins were identified. Here we characterize the interactions of VirD2 with two isoforms of Arabidopsis cyclophilins identified by using this analysis. The VirD2 domain interacting with the cyclophilins is distinct from the endonuclease, omega, and the nuclear localization signal domains. The VirD2–cyclophilin interaction is disrupted in vitro by cyclosporin A, which also inhibits Agrobacterium-mediated transformation of Arabidopsis and tobacco. These data strongly suggest that host cyclophilins play a role in T-DNA transfer.
Resumo:
We have identified a mammalian protein called GIPC (for GAIP interacting protein, C terminus), which has a central PDZ domain and a C-terminal acyl carrier protein (ACP) domain. The PDZ domain of GIPC specifically interacts with RGS-GAIP, a GTPase-activating protein (GAP) for Gαi subunits recently localized on clathrin-coated vesicles. Analysis of deletion mutants indicated that the PDZ domain of GIPC specifically interacts with the C terminus of GAIP (11 amino acids) in the yeast two-hybrid system and glutathione S-transferase (GST)-GIPC pull-down assays, but GIPC does not interact with other members of the RGS (regulators of G protein signaling) family tested. This finding is in keeping with the fact that the C terminus of GAIP is unique and possesses a modified C-terminal PDZ-binding motif (SEA). By immunoblotting of membrane fractions prepared from HeLa cells, we found that there are two pools of GIPC–a soluble or cytosolic pool (70%) and a membrane-associated pool (30%). By immunofluorescence, endogenous and GFP-tagged GIPC show both a diffuse and punctate cytoplasmic distribution in HeLa cells reflecting, respectively, the existence of soluble and membrane-associated pools. By immunoelectron microscopy the membrane pool of GIPC is associated with clusters of vesicles located near the plasma membrane. These data provide direct evidence that the C terminus of a RGS protein is involved in interactions specific for a given RGS protein and implicates GAIP in regulation of additional functions besides its GAP activity. The location of GIPC together with its binding to GAIP suggest that GAIP and GIPC may be components of a G protein-coupled signaling complex involved in the regulation of vesicular trafficking. The presence of an ACP domain suggests a putative function for GIPC in the acylation of vesicle-bound proteins.
Resumo:
Several G-protein coupled receptors, such as the β1-adrenergic receptor (β1-AR), contain polyproline motifs within their intracellular domains. Such motifs in other proteins are known to mediate protein–protein interactions such as with Src homology (SH)3 domains. Accordingly, we used the proline-rich third intracellular loop of the β1-AR either as a glutathione S-transferase fusion protein in biochemical “pull-down” assays or as bait in the yeast two-hybrid system to search for interacting proteins. Both approaches identified SH3p4/p8/p13 (also referred to as endophilin 1/2/3), a SH3 domain-containing protein family, as binding partners for the β1-AR. In vitro and in human embryonic kidney (HEK) 293 cells, SH3p4 specifically binds to the third intracellular loop of the β1-AR but not to that of the β2-AR. Moreover, this interaction is mediated by the C-terminal SH3 domain of SH3p4. Functionally, overexpression of SH3p4 promotes agonist-induced internalization and modestly decreases the Gs coupling efficacy of β1-ARs in HEK293 cells while having no effect on β2-ARs. Thus, our studies demonstrate a role of the SH3p4/p8/p13 protein family in β1-AR signaling and suggest that interaction between proline-rich motifs and SH3-containing proteins may represent a previously underappreciated aspect of G-protein coupled receptor signaling.
Resumo:
CP12 is a small nuclear encoded chloroplast protein of higher plants, which was recently shown to interact with NAD(P)H–glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.13), one of the key enzymes of the reductive pentosephosphate cycle (Calvin cycle). Screening of a pea cDNA library in the yeast two-hybrid system for proteins that interact with CP12, led to the identification of a second member of the Calvin cycle, phosphoribulokinase (PRK; EC 2.7.1.19), as a further specific binding partner for CP12. The exchange of cysteines for serines in CP12 demonstrate that interaction with PRK occurs at the N-terminal peptide loop of CP12. Size exclusion chromatography and immunoprecipitation assays reveal the existence of a stable 600-kDa PRK/CP12/GAPDH complex in the stroma of higher plant chloroplasts. Its stoichiometry is proposed to be of two N-terminally dimerized CP12 molecules, each carrying one PRK dimer on its N terminus and one A2B2 complex of GAPDH subunits on the C-terminal peptide loop. Incubation of the complex with NADP or NADPH, in contrast to NAD or NADH, causes its dissociation. Assays with the stromal 600-kDa fractions in the presence of the four different nicotinamide-adenine dinucleotides indicate that PRK activity depends on complex dissociation and might be further regulated by the accessible ratio of NADP/NADPH. From these results, we conclude that light regulation of the Calvin cycle in higher plants is not only via reductive activation of different proteins by the well-established ferredoxin/thioredoxin system, but in addition, by reversible dissociation of the PRK/CP12/GAPDH complex, mediated by NADP(H).
Resumo:
In the intracellular death program, hetero- and homodimerization of different anti- and pro-apoptotic Bcl-2-related proteins are critical in the determination of cell fate. From a rat ovarian fusion cDNA library, we isolated a new pro-apoptotic Bcl-2 gene, Bcl-2-related ovarian killer (Bok). Bok had conserved Bcl-2 homology (BH) domains 1, 2, and 3 and a C-terminal transmembrane region present in other Bcl-2 proteins, but lacked the BH4 domain found only in anti-apoptotic Bcl-2 proteins. In the yeast two-hybrid system, Bok interacted strongly with some (Mcl-1, BHRF1, and Bfl-1) but not other (Bcl-2, Bcl-xL, and Bcl-w) anti-apoptotic members. This finding is in direct contrast to the ability of other pro-apoptotic members (Bax, Bak, and Bik) to interact with all of the anti-apoptotic proteins. In addition, negligible interaction was found between Bok and different pro-apoptotic members. In mammalian cells, overexpression of Bok induced apoptosis that was blocked by the baculoviral-derived cysteine protease inhibitor P35. Cell killing induced by Bok was also suppressed following coexpression with Mcl-1 and BHRF1 but not with Bcl-2, further indicating that Bok heterodimerized only with selective anti-apoptotic Bcl-2 proteins. Northern blot analysis indicated that Bok was highly expressed in the ovary, testis and uterus. In situ hybridization analysis localized Bok mRNA in granulosa cells, the cell type that underwent apoptosis during follicle atresia. Identification of Bok as a new pro-apoptotic Bcl-2 protein with restricted tissue distribution and heterodimerization properties could facilitate elucidation of apoptosis mechanisms in reproductive tissues undergoing hormone-regulated cyclic cell turnover.
Resumo:
Dystrobrevin, a dystrophin-related and -associated protein, has been proposed to be important in the formation and maintenance of the neuromuscular junction. Dystrobrevin coprecipitates with both the acetylcholine receptor complex as well as the dystrophin glycoprotein complex. Although the nature of dystrobrevin’s association with the dystrophin glycoprotein complex remains unclear, it is known that dystrobrevin binds directly to the syntrophins, a heterologous group of dystrophin-associated proteins. Using the yeast two-hybrid system to identify protein–protein interactions, we present evidence for the heterodimerization of dystrobrevin directly with dystrophin. The C terminus of dystrobrevin binds specifically to the C terminus of dystrophin. We further refined this site of interaction to these proteins’ homologous coiled-coil motifs that flank their respective syntrophin-binding sites. We also show that the interaction between the dystrobrevin and dystrophin coiled-coil domains is specific and is not due to a nonspecific coiled-coil domain interaction. From the accumulated evidence of protein–protein interactions presented here and elsewhere, we propose a partially revised model of the organization of the dystrophin-associated glycoprotein complex.
Resumo:
Wiskott–Aldrich syndrome (WAS) is an X-linked immunodeficiency caused by mutations that affect the WAS protein (WASP) and characterized by cytoskeletal abnormalities in hematopoietic cells. By using the yeast two-hybrid system we have identified a proline-rich WASP-interacting protein (WIP), which coimmunoprecipitated with WASP from lymphocytes. WIP binds to WASP at a site distinct from the Cdc42 binding site and has actin as well as profilin binding motifs. Expression of WIP in human B cells, but not of a WIP truncation mutant that lacks the actin binding motif, increased polymerized actin content and induced the appearance of actin-containing cerebriform projections on the cell surface. These results suggest that WIP plays a role in cortical actin assembly that may be important for lymphocyte function.
Resumo:
We have isolated a novel cDNA, that appears to represent a new class of ion channels, by using the yeast two-hybrid system and the SH3 domain of the neural form of Src (N-src) as a bait. The encoded polypeptide, BCNG-1, is distantly related to cyclic nucleotide-gated channels and the voltage-gated channels, Eag and H-erg. BCNG-1 is expressed exclusively in the brain, as a glycosylated protein of ≈132 kDa. Immunohistochemical analysis indicates that BCNG-1 is preferentially expressed in specific subsets of neurons in the neocortex, hippocampus, and cerebellum, in particular pyramidal neurons and basket cells. Within individual neurons, the BCNG-1 protein is localized to either the dendrites or the axon terminals depending on the cell type. Southern blot analysis shows that several other BCNG-related sequences are present in the mouse genome, indicating the emergence of an entire subfamily of ion channel coding genes. These findings suggest the existence of a new type of ion channel, which is potentially able to modulate membrane excitability in the brain and could respond to regulation by cyclic nucleotides.
Resumo:
GAIP (G Alpha Interacting Protein) is a member of the recently described RGS (Regulators of G-protein Signaling) family that was isolated by interaction cloning with the heterotrimeric G-protein Gαi3 and was recently shown to be a GTPase-activating protein (GAP). In AtT-20 cells stably expressing GAIP, we found that GAIP is membrane-anchored and faces the cytoplasm, because it was not released by sodium carbonate treatment but was digested by proteinase K. When Cos cells were transiently transfected with GAIP and metabolically labeled with [35S]methionine, two pools of GAIP—a soluble and a membrane-anchored pool—were found. Since the N terminus of GAIP contains a cysteine string motif and cysteine string proteins are heavily palmitoylated, we investigated the possibility that membrane-anchored GAIP might be palmitoylated. We found that after labeling with [3H]palmitic acid, the membrane-anchored pool but not the soluble pool was palmitoylated. In the yeast two-hybrid system, GAIP was found to interact specifically with members of the Gαi subfamily, Gαi1, Gαi2, Gαi3, Gαz, and Gαo, but not with members of other Gα subfamilies, Gαs, Gαq, and Gα12/13. The C terminus of Gαi3 is important for binding because a 10-aa C-terminal truncation and a point mutant of Gαi3 showed significantly diminished interaction. GAIP interacted preferentially with the activated (GTP) form of Gαi3, which is in keeping with its GAP activity. We conclude that GAIP is a membrane-anchored GAP with a cysteine string motif. This motif, present in cysteine string proteins found on synaptic vesicles, pancreatic zymogen granules, and chromaffin granules, suggests GAIP’s possible involvement in membrane trafficking.
Resumo:
The Krüppel-associated box A (KRAB-A) domain is an evolutionarily conserved transcriptional repressor domain present in approximately one-third of zinc finger proteins of the Cys2-His2 type. Using the yeast two-hybrid system, we report the isolation of a cDNA encoding a novel murine protein, KRAB-A interacting protein 1 (KRIP-1) that physically interacts with the KRAB-A region. KRIP-1 is a member of the RBCC subfamily of the RING finger, or Cys3HisCys4, family of zinc binding proteins whose other members are known to play important roles in differentiation, oncogenesis, and signal transduction. The KRIP-1 protein has high homology to TIF1, a putative modulator of ligand-dependent activation function of nuclear receptors. A 3.5-kb mRNA for KRIP-1 is ubiquitously expressed among all adult mouse tissues studied. When a GAL4–KRIP-1 fusion protein is expressed in COS cells with a chloramphenicol acetyltransferase reporter construct with five GAL4 binding sites, there is dose-dependent repression of transcription. Thus, KRIP-1 interacts with the KRAB-A region of C2H2 zinc finger proteins and may mediate or modulate KRAB-A transcriptional repressor activity.