21 resultados para Corn Starch


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corn (Zea mays L.) root adaptation to pH 3.5 in comparison with pH 6.0 (control) was investigated in long-term nutrient solution experiments. When pH was gradually reduced, comparable root growth was observed irrespective of whether the pH was 3.5 or 6.0. After low-pH adaptation, H+ release of corn roots in vivo at pH 5.6 was about 3 times higher than that of control. Plasmalemma of corn roots was isolated for investigation in vitro. At optimum assay pH, in comparison with control, the following increases of the various parameters were caused by low-pH treatment: (a) hydrolytic ATPase activity, (b) maximum initial velocity and Michaelis constant (c) activation energy of H+-ATPase, (d) H+-pumping activity, (e) H+ permeability of plasmalemma, and (f) pH gradient across the membranes of plasmalemma vesicles. In addition, vanadate sensitivity remained unchanged. It is concluded that plasmalemma H+-ATPase contributes significantly to the adaptation of corn roots to low pH. A restricted net H+ release at low pH in vivo may be attributed to the steeper pH gradient and enhanced H+ permeability of plasmalemma but not to deactivation of H+-ATPase. Possible mechanisms responsible for adaptation of plasmalemma H+-ATPase to low solution pH during plant cultivation are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the developing endosperm of monocotyledonous plants, starch granules are synthesized and deposited within the amyloplast. A soluble stromal fraction was isolated from amyloplasts of immature maize (Zea mays L.) endosperm and analyzed for enzyme activities and polypeptide content. Specific activities of starch synthase and starch-branching enzyme (SBE), but not the cytosolic marker alcohol dehydrogenase, were strongly enhanced in soluble amyloplast stromal fractions relative to soluble extracts obtained from homogenized kernels or endosperms. Immunoblot analysis demonstrated that starch synthase I, SBEIIb, and sugary1, the putative starch-debranching enzyme, were each highly enriched in the amyloplast stroma, providing direct evidence for the localization of starch-biosynthetic enzymes within this compartment. Analysis of maize mutants shows the deficiency of the 85-kD SBEIIb polypeptide in the stroma of amylose extender cultivars and that the dull mutant lacks a >220-kD stromal polypeptide. The stromal fraction is distinguished by differential enrichment of a characteristic group of previously undocumented polypeptides. N-terminal sequence analysis revealed that an abundant 81-kD stromal polypeptide is a member of the Hsp70 family of stress-related proteins. Moreover, the 81-kD stromal polypeptide is strongly recognized by antibodies specific for an Hsp70 of the chloroplast stroma. These findings are discussed in light of implications for the correct folding and assembly of soluble, partially soluble, and granule-bound starch-biosynthetic enzymes during import into the amyloplast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starch granules from maize (Zea mays) contain a characteristic group of polypeptides that are tightly associated with the starch matrix (C. Mu-Forster, R. Huang, J.R. Powers, R.W. Harriman, M. Knight, G.W. Singletary, P.L. Keeling, B.P. Wasserman [1996] Plant Physiol 111: 821–829). Zeins comprise about 50% of the granule-associated proteins, and in this study their spatial distribution within the starch granule was determined. Proteolysis of starch granules at subgelatinization temperatures using the thermophilic protease thermolysin led to selective removal of the zeins, whereas granule-associated proteins of 32 kD or above, including the waxy protein, starch synthase I, and starch-branching enzyme IIb, remained refractory to proteolysis. Granule-associated proteins from maize are therefore composed of two distinct classes, the surface-localized zeins of 10 to 27 kD and the granule-intrinsic proteins of 32 kD or higher. The origin of surface-localized δ-zein was probed by comparing δ-zein levels of starch granules obtained from homogenized whole endosperm with granules isolated from amyloplasts. Starch granules from amyloplasts contained markedly lower levels of δ-zein relative to granules prepared from whole endosperm, thus indicating that δ-zein adheres to granule surfaces after disruption of the amyloplast envelope. Cross-linking experiments show that the zeins are deposited on the granule surface as aggregates. In contrast, the granule-intrinsic proteins are prone to covalent modification, but do not form intermolecular cross-links. We conclude that individual granule intrinsic proteins exist as monomers and are not deposited in the form of multimeric clusters within the starch matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dark-grown hypocotyls of a starch-deficient mutant (NS458) of tobacco (Nicotiana sylvestris) lack amyloplasts and plastid sedimentation, and have severely reduced gravitropism. However, gravitropism improved dramatically when NS458 seedlings were grown in the light. To determine the extent of this improvement and whether mutant hypocotyls contain sedimented amyloplasts, gravitropic sensitivity (induction time and intermittent stimulation) and plastid size and position in the endodermis were measured in seedlings grown for 8 d in the light. Light-grown NS458 hypocotyls were gravitropic but were less sensitive than the wild type (WT). Starch occupied 10% of the volume of NS458 plastids grown in both the light and the dark, whereas WT plastids were essentially filled with starch in both treatments. Light increased plastid size twice as much in the mutant as in the WT. Plastids in light-grown NS458 were sedimented, presumably because of their larger size and greater total starch content. The induction by light of plastid sedimentation in NS458 provides new evidence for the role of plastid mass and sedimentation in stem gravitropic sensing. Because the mutant is not as sensitive as the WT, NS458 plastids may not have sufficient mass to provide full gravitropic sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interpretation of quantitative trait locus (QTL) studies of agronomic traits is limited by lack of knowledge of biochemical pathways leading to trait expression. To more fully elucidate the biological significance of detected QTL, we chose a trait that is the product of a well-characterized pathway, namely the concentration of maysin, a C-glycosyl flavone, in silks of maize, Zea mays L. Maysin is a host-plant resistance factor against the corn earworm, Helicoverpa zea (Boddie). We determined silk maysin concentrations and restriction fragment length polymorphism genotypes at flavonoid pathway loci or linked markers for 285 F2 plants derived from the cross of lines GT114 and GT119. Single-factor analysis of variance indicated that the p1 region on chromosome 1 accounted for 58.0% of the phenotypic variance and showed additive gene action. The p1 locus is a transcription activator for portions of the flavonoid pathway. A second QTL, represented by marker umc 105a near the brown pericarp1 locus on chromosome 9, accounted for 10.8% of the variance. Gene action of this region was dominant for low maysin, but was only expressed in the presence of a functional p1 allele. The model explaining the greatest proportion of phenotypic variance (75.9%) included p1, umc105a, umc166b (chromosome 1), r1 (chromosome 10), and two epistatic interaction terms, p1 x umc105a and p1 x r1. Our results provide evidence that regulatory loci have a central role and that there is a complex interplay among different branches of the flavonoid pathway in the expression of this trait.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Female moths often become depleted of sex pheromone after mating as the various components of virgin behavior are switched off. In examining a potential male contribution to these events in the corn earworm moth Helicoverpa zea, we have characterized a basic polypeptide from the tissues producing (accessory glands) and storing (duplex) the seminal fluids. The peptide evokes the depletion of sex pheromone when injected into virgin females. This pheromonostatic peptide (PSP) is 57 amino acids long and contains a single disulfide bridge. It is blocked at the N terminus with pyroglutamate and at the C terminus by amidation. As little as 23 ng of peptide evokes the near-complete depletion of pheromone in decapitated (neck-ligated) females that had been injected with pheromone biosynthesis-activating neuropeptide. Activity is approximately 15-fold less in intact virgins, showing that the head limits the expression of activity in these injected females. Females mated to surgically impaired males, capable of producing a spermatophore but not transferring spermatozoa or seminal fluids, are depleted of pheromone by injected peptide. Females whose abdominal nerve cords have been severed are not depleted of pheromone after mating. Thus, neural signals either descending or ascending via the nerve cord are required for the depletion of pheromone after mating. PSP, from the seminal fluids, may participate in this process by direct or indirect action on the glandular tissue; if so, it represents an unusual mechanism in insects for the regulation by seminal fluids of postmating reproductive behavior.