123 resultados para Core-binding-factor
Resumo:
Proteins containing the EF-hand Ca2+-binding motif, such as calmodulin and calcineurin B, function as regulators of various cellular processes. Here we focus on p22, an N-myristoylated, widely expressed EF-hand Ca2+-binding protein conserved throughout evolution, which was shown previously to be required for membrane traffic. Immunofluorescence studies show that p22 distributes along microtubules during interphase and mitosis in various cell lines. Moreover, we report that p22 associates with the microtubule cytoskeleton indirectly via a cytosolic microtubule-binding factor. Gel filtration studies indicate that the p22–microtubule-binding activity behaves as a 70- to 30-kDa globular protein. Our results indicate that p22 associates with microtubules via a novel N-myristoylation–dependent mechanism that does not involve classic microtubule-associated proteins and motor proteins. The association of p22 with microtubules requires the N-myristoylation of p22 but does not involve p22’s Ca2+-binding activity, suggesting that the p22–microtubule association and the role of p22 in membrane traffic are functionally related, because N-myristoylation is required for both events. Therefore, p22 is an excellent candidate for a protein that can mediate interactions between the microtubule cytoskeleton and membrane traffic.
Resumo:
The γ-carboxyglutamic acid (Gla) domain of blood coagulation factors is responsible for Ca2+-dependent phospholipid membrane binding. Factor X-binding protein (X-bp), an anticoagulant protein from snake venom, specifically binds to the Gla domain of factor X. The crystal structure of X-bp in complex with the Gla domain peptide of factor X at 2.3-Å resolution showed that the anticoagulation is based on the fact that two patches of the Gla domain essential for membrane binding are buried in the complex formation. The Gla domain thus is expected to be a new target of anticoagulant drugs, and X-bp provides a basis for designing them. This structure also provides a membrane-bound model of factor X.
Resumo:
The Src homology 3 (SH3) domain is a 50-aa modular unit present in many cellular proteins involved in intracellular signal transduction. It functions to direct protein-protein interactions through the recognition of proline-rich motifs on associated proteins. SH3 domains are important regulatory elements that have been demonstrated to specify distinct regulatory pathways important for cell growth, migration, differentiation, and responses to the external milieu. By the use of synthetic peptides, ligands have been shown to consist of a minimum core sequence and to bind to SH3 domains in one of two pseudosymmetrical orientations, class I and class II. The class I sites have the consensus sequence ZP(L/P)PP psi P whereas the class II consensus is PP psi PPZ (where psi is a hydrophobic residue and Z is a SH3 domain-specific residue). We previously showed by M13 phage display that the Src, Fyn, Lyn, and phosphatidylinositol 3-kinase (PI3K) SH3 domains preferred the same class I-type core binding sequence, RPLPP psi P. These results failed to explain the specificity for cellular proteins displayed by SH3 domains in cells. In the current study, class I and class II core ligand sequences were displayed on the surface of bacteriophage M13 with five random residues placed either N- or C-terminal of core ligand residues. These libraries were screened for binding to the Src, Fyn, Lyn, Yes, and PI3K SH3 domains. By this approach, additional ligand residue preferences were identified that can increase the affinity of SH3 peptide ligands at least 20-fold compared with core peptides. The amino acids selected in the flanking sequences were similar for Src, Fyn, and Yes SH3 domains; however, Lyn and PI3K SH3 domains showed distinct binding specificities. These results indicate that residues that flank the core binding sequences shared by many SH3 domains are important determinants of SH3 binding affinity and selectivity.
Resumo:
NMP-1 was initially identified as a nuclear matrix-associated DNA-binding factor that exhibits sequence-specific recognition for the site IV regulatory element of a histone H4 gene. This distal promoter domain is a nuclear matrix interaction site. In the present study, we show that NMP-1 is the multifunctional transcription factor YY1. Gel-shift and Western blot analyses demonstrate that NMP-1 is immunoreactive with YY1 antibody. Furthermore, purified YY1 protein specifically recognizes site IV and reconstitutes the NMP-1 complex. Western blot and gel-shift analyses indicate that YY1 is present within the nuclear matrix. In situ immunofluorescence studies show that a significant fraction of YY1 is localized in the nuclear matrix, principally but not exclusively associated with residual nucleoli. Our results confirm that NMP-1/YY1 is a ubiquitous protein that is present in both human cells and in rat osteosarcoma ROS 17/2.8 cells. The finding that NMP-1 is identical to YY1 suggests that this transcriptional regulator may mediate gene-matrix interactions. Our results are consistent with the concept that the nuclear matrix may functionally compartmentalize the eukaryotic nucleus to support regulation of gene expression.
Resumo:
ETS transcription factors play important roles in hematopoiesis, angiogenesis, and organogenesis during murine development. The ETS genes also have a role in neoplasia, for example in Ewing’s sarcomas and retrovirally induced cancers. The ETS genes encode transcription factors that bind to specific DNA sequences and activate transcription of various cellular and viral genes. To isolate novel ETS target genes, we used two approaches. In the first approach, we isolated genes by the RNA differential display technique. Previously, we have shown that the overexpression of ETS1 and ETS2 genes effects transformation of NIH 3T3 cells and specific transformants produce high levels of the ETS proteins. To isolate ETS1 and ETS2 responsive genes in these transformed cells, we prepared RNA from ETS1, ETS2 transformants, and normal NIH 3T3 cell lines and converted it into cDNA. This cDNA was amplified by PCR and displayed on sequencing gels. The differentially displayed bands were subcloned into plasmid vectors. By Northern blot analysis, several clones showed differential patterns of mRNA expression in the NIH 3T3-, ETS1-, and ETS2-expressing cell lines. Sixteen clones were analyzed by DNA sequence analysis, and 13 of them appeared to be unique because their DNA sequences did not match with any of the known genes present in the gene bank. Three known genes were found to be identical to the CArG box binding factor, phospholipase A2-activating protein, and early growth response 1 (Egr1) genes. In the second approach, to isolate ETS target promoters directly, we performed ETS1 binding with MboI-cleaved genomic DNA in the presence of a specific mAb followed by whole genome PCR. The immune complex-bound ETS binding sites containing DNA fragments were amplified and subcloned into pBluescript and subjected to DNA sequence and computer analysis. We found that, of a large number of clones isolated, 43 represented unique sequences not previously identified. Three clones turned out to contain regulatory sequences derived from human serglycin, preproapolipoprotein C II, and Egr1 genes. The ETS binding sites derived from these three regulatory sequences showed specific binding with recombinant ETS proteins. Of interest, Egr1 was identified by both of these techniques, suggesting strongly that it is indeed an ETS target gene.
Resumo:
The prolamin box (P-box) is a highly conserved 7-bp sequence element (5′-TGTAAAG-3′) found in the promoters of many cereal seed storage protein genes. Nuclear factors from maize endosperm specifically interact with the P-box present in maize prolamin genes (zeins). The presence of the P-box in all zein gene promoters suggests that interactions between endosperm DNA binding proteins and the P-box may play an important role in the coordinate activation of zein gene expression during endosperm development. We have cloned an endosperm-specific maize cDNA, named prolamin-box binding factor (PBF), that encodes a member of the recently described Dof class of plant Cys2-Cys2 zinc-finger DNA binding proteins. When tested in gel shift assays, PBF exhibits the same sequence-specific binding to the P-box as factors present in maize endosperm nuclei. Additionally, PBF interacts in vitro with the basic leucine zipper protein Opaque2, a known transcriptional activator of zein gene expression whose target site lies 20 bp downstream of the P-box in the 22-kDa zein gene promoter. The isolation of the PBF gene provides an essential tool to further investigate the functional role of the highly conserved P-box in regulating cereal storage protein gene expression.
Resumo:
LEF-1 (lymphoid enhancer-binding factor 1) is a cell type-specific member of the family of high mobility group (HMG) domain proteins that recognizes a specific nucleotide sequence in the T cell receptor (TCR) α enhancer. In this study, we extend the analysis of the DNA-binding properties of LEF-1 and examine their contributions to the regulation of gene expression. We find that LEF-1, like nonspecific HMG-domain proteins, can interact with irregular DNA structures such as four-way junctions, albeit with lower efficiency than with specific duplex DNA. We also show by a phasing analysis that the LEF-induced DNA bend is directed toward the major groove. In addition, we find that the interaction of LEF-1 with a specific binding site in circular DNA changes the linking number of DNA and unwinds the double helix. Finally, we identified two nucleotides in the LEF-1-binding site that are important for protein-induced DNA bending. Mutations of these nucleotides decrease both the extent of DNA bending and the transactivation of the TCRα enhancer by LEF-1, suggesting a contribution of protein-induced DNA bending to the function of TCRα enhancer.
Resumo:
Metaphase nucleolar organizer regions (NORs), one of four types of chromosome bands, are located on human acrocentric chromosomes. They contain r-chromatin, i.e., ribosomal genes complexed with proteins such as upstream binding factor and RNA polymerase I, which are argyrophilic NOR proteins. Immunocytochemical and cytochemical labelings of these proteins were used to reveal r-chromatin in situ and to investigate its spatial organization within NORs by confocal microscopy and by electron tomography. For each labeling, confocal microscopy revealed small and large double-spotted NORs and crescent-shaped NORs. Their internal three-dimensional (3D) organization was studied by using electron tomography on specifically silver-stained NORs. The 3D reconstructions allow us to conclude that the argyrophilic NOR proteins are grouped as a fiber of 60–80 nm in diameter that constitutes either one part of a turn or two or three turns of a helix within small and large double-spotted NORs, respectively. Within crescent-shaped NORs, virtual slices reveal that the fiber constitutes several longitudinally twisted loops, grouped as two helical 250- to 300-nm coils, each centered on a nonargyrophilic axis of condensed chromatin. We propose a model of the 3D organization of r-chromatin within elongated NORs, in which loops are twisted and bent to constitute one basic chromatid coil.
Resumo:
We studied the effect of N-cadherin, and its free or membrane-anchored cytoplasmic domain, on the level and localization of β-catenin and on its ability to induce lymphocyte enhancer-binding factor 1 (LEF-1)-responsive transactivation. These cadherin derivatives formed complexes with β-catenin and protected it from degradation. N-cadherin directed β-catenin into adherens junctions, and the chimeric protein induced diffuse distribution of β-catenin along the membrane whereas the cytoplasmic domain of N-cadherin colocalized with β-catenin in the nucleus. Cotransfection of β-catenin and LEF-1 into Chinese hamster ovary cells induced transactivation of a LEF-1 reporter, which was blocked by the N-cadherin-derived molecules. Expression of N-cadherin and an interleukin 2 receptor/cadherin chimera in SW480 cells relocated β-catenin from the nucleus to the plasma membrane and reduced transactivation. The cytoplasmic tails of N- or E-cadherin colocalized with β-catenin in the nucleus, and suppressed the constitutive LEF-1-mediated transactivation, by blocking β-catenin–LEF-1 interaction. Moreover, the 72 C-terminal amino acids of N-cadherin stabilized β-catenin and reduced its transactivation potential. These results indicate that β-catenin binding to the cadherin cytoplasmic tail either in the membrane, or in the nucleus, can inhibit β-catenin degradation and efficiently block its transactivation capacity.
Resumo:
Telomeres are essential for preserving chromosome integrity during the cell cycle and have been specifically implicated in mitotic progression, but little is known about the signaling molecule(s) involved. The human telomeric repeat binding factor protein (TRF1) is shown to be important in regulating telomere length. However, nothing is known about its function and regulation during the cell cycle. The sequence of PIN2, one of three human genes (PIN1-3) we previously cloned whose products interact with the Aspergillus NIMA cell cycle regulatory protein kinase, reveals that it encodes a protein that is identical in sequence to TRF1 apart from an internal deletion of 20 amino acids; Pin2 and TRF1 may be derived from the same gene, PIN2/TRF1. However, in the cell Pin2 was found to be the major expressed product and to form homo- and heterodimers with TRF1; both dimers were localized at telomeres. Pin2 directly bound the human telomeric repeat DNA in vitro, and was localized to all telomeres uniformly in telomerase-positive cells. In contrast, in several cell lines that contain barely detectable telomerase activity, Pin2 was highly concentrated at only a few telomeres. Interestingly, the protein level of Pin2 was highly regulated during the cell cycle, being strikingly increased in G2+M and decreased in G1 cells. Moreover, overexpression of Pin2 resulted in an accumulation of HeLa cells in G2+M. These results indicate that Pin2 is the major human telomeric protein and is highly regulated during the cell cycle, with a possible role in mitosis. The results also suggest that Pin2/TRF1 may connect mitotic control to the telomere regulatory machinery whose deregulation has been implicated in cancer and aging.
Resumo:
The gene encoding the Ras-related GTPase RhoB-specific is immediate-early inducible by genotoxic treatments. Regulation of transcriptional activation of rhoB is still unclear. Here we show that cells lacking either p53 or c-Fos are not different from wild-type cells with respect to the level of rhoB induction upon UV irradiation, indicating that these transcription factors are not crucial for stimulation of rhoB mRNA expression. Extracts from UV-irradiated and non-irradiated cells revealed similar DNA-binding activities to a 0.17 kb rhoB promoter fragment harboring the functional element(s) necessary for stimulation of rhoB by UV light. By means of immunoprecipitation we found that an ATF-2-specific antibody co-precipitates the 32P-labeled 0.17 kb rhoB fragment, whereas an anti-AP1 antibody did not. Since no consensus sequence for binding of ATF-2 is present within the rhoB promoter, ATF-2 is likely to be associated with another factor that binds to the minimal promoter. Deletion analysis and site-directed mutagenesis of the 0.17 kb rhoB fragment revealed a CCAAT box to be an essential requirement for stimulation of rhoB by UV light and methyl methanesulfonate. Moreover, immunoprecipitation experiments showed that the CCAAT-binding factor NF-YA is complexed with ATF-2. Overall, the data strongly indicate that transcriptional activation of the rhoB gene by genotoxic stress is regulated via a CCAAT box and that interaction of CCAAT-binding factor and ATF-2 triggers the stress-inducible expression of rhoB.
Resumo:
An emerging theme in transforming growth factor-β (TGF-β) signalling is the association of the Smad proteins with diverse groups of transcriptional regulatory proteins. Several Smad cofactors have been identified to date but the diversity of TGF-β effects on gene transcription suggests that interactions with other co-regulators must occur. In these studies we addressed the possible interaction of Smad proteins with the myocyte enhancer-binding factor 2 (MEF2) transcriptional regulators. Our studies indicate that Smad2 and 4 (Smad2/4) complexes cooperate with MEF2 regulatory proteins in a GAL4-based one-hybrid reporter gene assay. We have also observed in vivo interactions between Smad2 and MEF2A using co-immunoprecipitation assays. This interaction is confirmed by glutathione S-transferase pull-down analysis. Immunofluorescence studies in C2C12 myotubes show that Smad2 and MEF2A co-localise in the nucleus of multinuclear myotubes during differentiation. Interestingly, phospho-acceptor site mutations of MEF2 that render it unresponsive to p38 MAP kinase signalling abrogate the cooperativity with the Smads suggesting that p38 MAP Kinase-catalysed phosphorylation of MEF2 is a prerequisite for the Smad–MEF2 interaction. Thus, the association between Smad2 and MEF2A may subserve a physical link between TGF-β signalling and a diverse array of genes controlled by the MEF2 cis element.
Resumo:
We have previously shown that three distinct DNA-binding activities, in crude form, are necessary for the ATP-dependent assembly of a specific and stable multiprotein complex at a yeast origin of replication. Here we show the purification of one of these DNA binding activities, referred to as origin binding factor 2 (OBF2). The purified protein is a heterodimer composed of two polypeptides with molecular mass values of 65 and 80 kDa as determined by SDS/PAGE. Purified OBF2 not only binds DNA but also supports the formation of a protein complex at essential sequences within the ARS121 origin of replication. Interestingly, OBF2 binds tightly and nonspecifically to both duplex DNA and single-stranded DNA. The interaction with duplex DNA occurs at the termini. N-terminal sequencing of the 65-kDa subunit has revealed that this polypeptide is identical to the previously identified HDF1 peptide, a yeast homolog of the small subunit of the mammalian Ku autoantigen. Although the potential involvement of Ku in DNA metabolic events has been proposed, this is the first requirement for a Ku-like protein in the assembly of a protein complex at essential sequences within a eukaryotic origin of replication.
Resumo:
Members of the MyoD family of muscle-specific basic helix-loop-helix (bHLH) proteins function within a genetic pathway to control skeletal muscle development. Mutational analyses of these factors suggested that their DNA binding domains mediated interaction with a coregulator required for activation of muscle-specific transcription. Members of the myocyte enhancer binding factor 2 (MEF2) family of MADS-box proteins are expressed at high levels in muscle and neural cells and at lower levels in several other cell types. MEF2 factors are unable to activate muscle gene expression alone, but they potentiate the transcriptional activity of myogenic bHLH proteins. This potentiation appears to be mediated by direct interactions between the DNA binding domains of these different types of transcription factors. Biochemical and genetic evidence suggests that MEF2 factors are the coregulators for myogenic bHLH proteins. The presence of MEF2 and cell-specific bHLH proteins in other cell types raises the possibility that these proteins may also cooperate to regulate other programs of cell-specific gene expression. We present a model to account for such cooperative interactions.
Resumo:
Protein-DNA interactions were studied in vivo at the region containing a human DNA replication origin, located at the 3' end of the lamin B2 gene and partially overlapping the promoter of another gene, located downstream. DNase I treatment of nuclei isolated from both exponentially growing and nonproliferating HL-60 cells showed that this region has an altered, highly accessible, chromatin structure. High-resolution analysis of protein-DNA interactions in a 600-bp area encompassing the origin was carried out by the in vivo footprinting technique based on the ligation-mediated polymerase chain reaction. In growing HL-60 cells, footprints at sequences homologous to binding sites for known transcription factors (members of the basic-helix-loop-helix family, nuclear respiratory factor 1, transcription factor Sp1, and upstream binding factor) were detected in the region corresponding to the promoter of the downstream gene. Upon conversion of cells to a nonproliferative state, a reduction in the intensity of these footprints was observed that paralleled the diminished transcriptional activity of the genomic area. In addition to these protections, in close correspondence to the replication initiation site, a prominent footprint was detected that extended over 70 nucleotides on one strand only. This footprint was absent from nonproliferating HL-60 cells, indicating that this specific protein-DNA interaction might be involved in the process of origin activation.