18 resultados para Concepts and evolution
Resumo:
We present a series of 8.4-GHz very-long-baseline radio interferometry images of the nucleus of Centaurus A (NGC5128) made with a Southern Hemisphere array, representing a 3.3-year monitoring effort. The nuclear radio jet is approximately 50 milliarcseconds in extent, or at the 3.5-megaparsec distance of NGC5128, approximately 1 parsec in length. Subluminal motion is seen and structural changes are observed on time scales shorter than 4 months. High-resolution observations at 4.8 and 8.4 GHz made in November 1992 reveal a complex morphology and allow us to unambiguously identify the self-absorbed core located at the southwestern end of the jet.
Resumo:
In many species, young solicit food from their parents, which respond by feeding them. Because of the difference in genetic make-up between parents and their offspring and the consequent conflict, this interaction is often studied as a paradigm for the evolution of communication. Existent theoretical models demonstrate that chick signaling and parent responding can be stable if solicitation is a costly signal. The marginal cost of producing stronger signals allows the system to converge to an equilibrium: young beg with intensity that reflects their need, and parents use this information to maximize their own inclusive fitness. However, we show that there is another equilibrium where chicks do not beg and parents’ provisioning effort is optimal with respect to the statistically probable distribution of chicks’ states. Expected fitness for parents and offspring at the nonsignaling equilibrium is higher than at the signaling equilibrium. Because nonsignaling is stable and it is likely to be the ancestral condition, we would like to know how natural systems evolved from nonsignaling to signaling. We suggest that begging may have evolved through direct sibling fighting before the establishment of a parental response, that is, that nonsignaling squabbling leads to signaling. In multiple-offspring broods, young following a condition-dependent strategy in the contest for resources provide information about their condition. Parents can use this information even though it is not an adaptation for communication, and evolution will lead the system to the signaling equilibrium. This interpretation implies that signaling evolved in multiple-offspring broods, but given that signaling is evolutionarily stable, it would also be favored in species which secondarily evolved single-chick broods.
Resumo:
Concerted evolution is often invoked to explain the diversity and evolution of the multigene families of major histocompatibility complex (MHC) genes and immunoglobulin (Ig) genes. However, this hypothesis has been controversial because the member genes of these families from the same species are not necessarily more closely related to one another than to the genes from different species. To resolve this controversy, we conducted phylogenetic analyses of several multigene families of the MHC and Ig systems. The results show that the evolutionary pattern of these families is quite different from that of concerted evolution but is in agreement with the birth-and-death model of evolution in which new genes are created by repeated gene duplication and some duplicate genes are maintained in the genome for a long time but others are deleted or become nonfunctional by deleterious mutations. We found little evidence that interlocus gene conversion plays an important role in the evolution of MHC and Ig multigene families.