31 resultados para Complete Genome
Resumo:
Multiple-complete-digest mapping is a DNA mapping technique based on complete-restriction-digest fingerprints of a set of clones that provides highly redundant coverage of the mapping target. The maps assembled from these fingerprints order both the clones and the restriction fragments. Maps are coordinated across three enzymes in the examples presented. Starting with yeast artificial chromosome contigs from the 7q31.3 and 7p14 regions of the human genome, we have produced cosmid-based maps spanning more than one million base pairs. Each yeast artificial chromosome is first subcloned into cosmids at a redundancy of ×15–30. Complete-digest fragments are electrophoresed on agarose gels, poststained, and imaged on a fluorescent scanner. Aberrant clones that are not representative of the underlying genome are rejected in the map construction process. Almost every restriction fragment is ordered, allowing selection of minimal tiling paths with clone-to-clone overlaps of only a few thousand base pairs. These maps demonstrate the practicality of applying the experimental and software-based steps in multiple-complete-digest mapping to a target of significant size and complexity. We present evidence that the maps are sufficiently accurate to validate both the clones selected for sequencing and the sequence assemblies obtained once these clones have been sequenced by a “shotgun” method.
Resumo:
A strategy for cloning and mutagenesis of an infectious herpesvirus genome is described. The mouse cytomegalovirus genome was cloned and maintained as a 230 kb bacterial artificial chromosome (BAC) in E. coli. Transfection of the BAC plasmid into eukaryotic cells led to a productive virus infection. The feasibility to introduce targeted mutations into the BAC cloned virus genome was shown by mutation of the immediate-early 1 gene and generation of a mutant virus. Thus, the complete construction of a mutant herpesvirus genome can now be carried out in a controlled manner prior to the reconstitution of infectious progeny. The described approach should be generally applicable to the mutagenesis of genomes of other large DNA viruses.
Resumo:
Genetic analysis of limiting quantities of genomic DNA play an important role in DNA forensics, paleoarcheology, genetic disease diagnosis, genetic linkage analysis, and genetic diversity studies. We have tested the ability of degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR) to amplify picogram quantities of human genomic DNA for the purpose of increasing the amount of template for genotyping with microsatellite repeat markers. DNA was uniformly amplified at a large number of typable loci throughout the human genome with starting template DNAs from as little as 15 pg to as much as 400 ng. A much greater-fold enrichment was seen for the smaller genomic DOP-PCRs. All markers tested were amplified from starting genomic DNAs in the range of 0.6–40 ng with amplifications of 200- to 600-fold. The DOP-PCR-amplified genomic DNA was an excellent and reliable template for genotyping with microsatellites, which give distinct bands with no increase in stutter artifact on di-, tri-, and tetranucleotide repeats. There appears to be equal amplification of genomic DNA from 55 of 55 tested discrete microsatellites implying near complete coverage of the human genome. Thus, DOP-PCR appears to allow unbiased, hundreds-fold whole genome amplification of human genomic DNA for genotypic analysis.
Resumo:
VIDA is a new virus database that organizes open reading frames (ORFs) from partial and complete genomic sequences from animal viruses. Currently VIDA includes all sequences from GenBank for Herpesviridae, Coronaviridae and Arteriviridae. The ORFs are organized into homologous protein families, which are identified on the basis of sequence similarity relationships. Conserved sequence regions of potential functional importance are identified and can be retrieved as sequence alignments. We use a controlled taxonomical and functional classification for all the proteins and protein families in the database. When available, protein structures that are related to the families have also been included. The database is available for online search and sequence information retrieval at http://www.biochem.ucl.ac.uk/bsm/virus_database/VIDA.html.
Resumo:
Candida albicans is a diploid fungus that has become a medically important opportunistic pathogen in immunocompromised individuals. We have sequenced the C. albicans genome to 10.4-fold coverage and performed a comparative genomic analysis between C. albicans and Saccharomyces cerevisiae with the objective of assessing whether Candida possesses a genetic repertoire that could support a complete sexual cycle. Analyzing over 500 genes important for sexual differentiation in S. cerevisiae, we find many homologues of genes that are implicated in the initiation of meiosis, chromosome recombination, and the formation of synaptonemal complexes. However, others are striking in their absence. C. albicans seems to have homologues of all of the elements of a functional pheromone response pathway involved in mating in S. cerevisiae but lacks many homologues of S. cerevisiae genes for meiosis. Other meiotic gene homologues in organisms ranging from filamentous fungi to Drosophila melanogaster and Caenorhabditis elegans were also found in the C. albicans genome, suggesting potential alternative mechanisms of genetic exchange.
Resumo:
Mitochondrial dysfunction can lead to diverse cellular and organismal responses. We used DNA microarrays to characterize the transcriptional responses to different mitochondrial perturbations in Saccharomyces cerevisiae. We examined respiratory-deficient petite cells and respiratory-competent wild-type cells treated with the inhibitors of oxidative phosphorylation antimycin, carbonyl cyanide m-chlorophenylhydrazone, or oligomycin. We show that respiratory deficiency, but not inhibition of mitochondrial ATP synthesis per se, induces a suite of genes associated with both peroxisomal activities and metabolite-restoration (anaplerotic) pathways that would mitigate the loss of a complete tricarboxylic acid cycle. The array data suggested, and direct microscopic observation of cells expressing a derivative of green fluorescent protein with a peroxisomal matrix-targeting signal confirmed, that respiratory deficiency dramatically induces peroxisome biogenesis. Transcript profiling of cells harboring null alleles of RTG1, RTG2, or RTG3, genes known to control signaling from mitochondria to the nucleus, suggests that there are multiple pathways of cross-talk between these organelles in yeast.
Resumo:
Reovirus genome segment S1 encodes protein σ1, which is the receptor binding protein, modulates tissue tropism, and specifies the nature of the antiviral immune response. It makes up less than 2% of reovirus particles and is synthesized in very small amounts in infected cells. Any antiviral strategy aimed at reducing specifically the expression of this genome segment should, in principle, reduce the infectivity of the virus. To test this hypothesis, we have assembled two hammer-head motif-containing ribozymes (Rzs) targeted to cleave at the conserved B and C domains of the reovirus s1 RNA. Protein-independent but Mg2+-dependent sequence-specific cleavage of s1 RNA was achieved by both the Rzs in trans. Cells that transiently express these Rzs, when challenged with reovirus, were protected against the cytopathic effects caused by the virus. This protection correlated with the specific intracellular reduction of s1 transcripts that was due to their cleavage by the Rzs. Rz-treated cells that were challenged with reovirus showed almost complete disappearance of protein σ1 without significantly altering the levels of the other reovirus structural proteins. Thus, Rzs, besides acting as antiviral agents, could be exploited as biological tools to delineate specific functions of target genes.
Resumo:
Understanding the factors responsible for variations in mutation patterns and selection efficacy along chromosomes is a prerequisite for deciphering genome sequences. Population genetics models predict a positive correlation between the efficacy of selection at a given locus and the local rate of recombination because of Hill–Robertson effects. Codon usage is considered one of the most striking examples that support this prediction at the molecular level. In a wide range of species including Caenorhabditis elegans and Drosophila melanogaster, codon usage is essentially shaped by selection acting for translational efficiency. Codon usage bias correlates positively with recombination rate in Drosophila, apparently supporting the hypothesis that selection on codon usage is improved by recombination. Here we present an exhaustive analysis of codon usage in C. elegans and D. melanogaster complete genomes. We show that in both genomes there is a positive correlation between recombination rate and the frequency of optimal codons. However, we demonstrate that in both species, this effect is due to a mutational bias toward G and C bases in regions of high recombination rate, possibly as a direct consequence of the recombination process. The correlation between codon usage bias and recombination rate in these species appears to be essentially determined by recombination-dependent mutational patterns, rather than selective effects. This result highlights that it is necessary to take into account the mutagenic effect of recombination to understand the evolutionary role and impact of recombination.
Resumo:
We have analyzed the developmental molecular programs of the mouse hippocampus, a cortical structure critical for learning and memory, by means of large-scale DNA microarray techniques. Of 11,000 genes and expressed sequence tags examined, 1,926 showed dynamic changes during hippocampal development from embryonic day 16 to postnatal day 30. Gene-cluster analysis was used to group these genes into 16 distinct clusters with striking patterns that appear to correlate with major developmental hallmarks and cellular events. These include genes involved in neuronal proliferation, differentiation, and synapse formation. A complete list of the transcriptional changes has been compiled into a comprehensive gene profile database (http://BrainGenomics.Princeton.edu), which should prove valuable in advancing our understanding of the molecular and genetic programs underlying both the development and the functions of the mammalian brain.
Resumo:
The complete nucleotide sequence, 5178 bp, of the totivirus Helminthosporium vicotoriae 190S virus (Hv190SV) double-stranded RNA, was determined. Computer-assisted sequence analysis revealed the presence of two large overlapping ORFs; the 5'-proximal large ORF (ORF1) codes for the coat protein (CP) with a predicted molecular mass of 81 kDa, and the 3'-proximal ORF (ORF2), which is in the -1 frame relative to ORF1, codes for an RNA-dependent RNA polymerase (RDRP). Unlike many other totiviruses, the overlap region between ORF1 and ORF2 lacks known structural information required for translational frameshifting. Using an antiserum to a C-terminal fragment of the RDRP, the product of ORF2 was identified as a minor virion-associated polypeptide of estimated molecular mass of 92 kDa. No CP-RDRP fusion protein with calculated molecular mass of 165 kDa was detected. The predicted start codon of the RDRP ORF (2605-AUG-2607) overlaps with the stop codon (2606-UGA-2608) of the CP ORF, suggesting RDRP is expressed by an internal initiation mechanism. Hv190SV is associated with a debilitating disease of its phytopathogenic fungal host. Knowledge of its genome organization and expression will be valuable for understanding its role in pathogenesis and for potential exploitation in the development of biocontrol measures.
Resumo:
The recently sequenced genome of the parasitic bacterium Mycoplasma genitalium contains only 468 identified protein-coding genes that have been dubbed a minimal gene complement [Fraser, C.M., Gocayne, J.D., White, O., Adams, M.D., Clayton, R.A., et al. (1995) Science 270, 397-403]. Although the M. genitalium gene complement is indeed the smallest among known cellular life forms, there is no evidence that it is the minimal self-sufficient gene set. To derive such a set, we compared the 468 predicted M. genitalium protein sequences with the 1703 protein sequences encoded by the other completely sequenced small bacterial genome, that of Haemophilus influenzae. M. genitalium and H. influenzae belong to two ancient bacterial lineages, i.e., Gram-positive and Gram-negative bacteria, respectively. Therefore, the genes that are conserved in these two bacteria are almost certainly essential for cellular function. It is this category of genes that is most likely to approximate the minimal gene set. We found that 240 M. genitalium genes have orthologs among the genes of H. influenzae. This collection of genes falls short of comprising the minimal set as some enzymes responsible for intermediate steps in essential pathways are missing. The apparent reason for this is the phenomenon that we call nonorthologous gene displacement when the same function is fulfilled by nonorthologous proteins in two organisms. We identified 22 nonorthologous displacements and supplemented the set of orthologs with the respective M. genitalium genes. After examining the resulting list of 262 genes for possible functional redundancy and for the presence of apparently parasite-specific genes, 6 genes were removed. We suggest that the remaining 256 genes are close to the minimal gene set that is necessary and sufficient to sustain the existence of a modern-type cell. Most of the proteins encoded by the genes from the minimal set have eukaryotic or archaeal homologs but seven key proteins of DNA replication do not. We speculate that the last common ancestor of the three primary kingdoms had an RNA genome. Possibilities are explored to further reduce the minimal set to model a primitive cell that might have existed at a very early stage of life evolution.
Resumo:
Here we describe the first instances to our knowledge of animal virus genome replication, and of de novo synthesis of infectious virions by a nonendogenous virus, in the yeast Saccharomyces cerevisiae, whose versatile genetics offers significant advantages for studying viral replication and virus-host interactions. Flock house virus (FHV) is the most extensively studied member of the Nodaviridae family of (+) strand RNA animal viruses. Transfection of yeast with FHV genomic RNA induced viral RNA replication, transcription, and assembly of infectious virions. Genome replication and virus synthesis were robust: all replicating FHV RNA species were readily detected in yeast by Northern blot analysis and yields of virions per cell were similar to those from Drosophila cells. We also describe in vivo expression and maintenance of a selectable yeast marker gene from an engineered FHV RNA derivative dependent on FHV-directed RNA replication. Use of these approaches with FHV and their possible extension to other viruses should facilitate identification and characterization of host factors required for genomic replication, gene expression, and virion assembly.
Resumo:
The nucleotide sequence of the human alpha-albumin gene, including 887 bp of the 5'-flanking region and 1311 bp of the 3-flanking region (24,454 in total), was determined from three overlapping lambda phage clones. The sequence spans 22,256 bp from the cap site to the polyadenylylation site, revealing a gene structure of 15 exons separated by 14 introns. The methionine initiation codon ATG is within exon 1; the termination codon TGA is within exon 14. Exon 15 is entirely untranslated and contains the polyadenylylation signal AATAAA. The deduced polypeptide chain is composed of a 21-amino-acid leader peptide, followed by 578 amino acids of the mature protein. There are seven repetitive DNA elements (Alu and Kpn) in the introns and 3-flanking region. The sizes of the 15 alpha-albumin exons match closely those of the albumin, alpha-fetoprotein, and vitamin D-binding protein genes. The exons are symmetrically placed within the three domains of the individual proteins, and they share a characteristic codon splitting pattern that is conserved among members of the gene family. The results provide strong evidence that alpha-albumin belongs to, and most likely completes with, the serum albumin gene family. Based on structural similarity, alpha-albumin appears to be most closely related to alpha-fetoprotein. The complete structure of this family of four tandemly linked genes provides a well-characterized approximately 200 kb locus in the 4q subcentromeric region of the human genome.
Resumo:
Agrobacterium tumefaciens transfers transferred DNA (T-DNA), a single-stranded segment of its tumor-inducing (Ti) plasmid, to the plant cell nucleus. The Ti-plasmid-encoded virulence E2 (VirE2) protein expressed in the bacterium has single-stranded DNA (ssDNA)-binding properties and has been reported to act in the plant cell. This protein is thought to exert its influence on transfer efficiency by coating and accompanying the single-stranded T-DNA (ss-T-DNA) to the plant cell genome. Here, we analyze different putative roles of the VirE2 protein in the plant cell. In the absence of VirE2 protein, mainly truncated versions of the T-DNA are integrated. We infer that VirE2 protects the ss-T-DNA against nucleolytic attack during the transfer process and that it is interacting with the ss-T-DNA on its way to the plant cell nucleus. Furthermore, the VirE2 protein was found not to be involved in directing the ss-T-DNA to the plant cell nucleus in a manner dependent on a nuclear localization signal, a function which is carried by the NLS of VirD2. In addition, the efficiency of T-DNA integration into the plant genome was found to be VirE2 independent. We conclude that the VirE2 protein of A. tumefaciens is required to preserve the integrity of the T-DNA but does not contribute to the efficiency of the integration step per se.
Resumo:
We have characterized a family of repetitive DNA elements with homology to the MgPa cellular adhesion operon of Mycoplasma genitalium, a bacterium that has the smallest known genome of any free-living organism. One element, 2272 bp in length and flanked by DNA with no homology to MgPa, was completely sequenced. At least four others were partially sequenced. The complete element is a composite of six regions. Five of these regions show sequence similarity with nonadjacent segments of genes of the MgPa operon. The sixth region, located near the center of the element, is an A+T-rich sequence that has only been found in this repeat family. Open reading frames are present within the five individual regions showing sequence homology to MgPa and the adjacent open reading frame 3 (ORF3) gene. However, termination codons are found between adjacent regions of homology to the MgPa operon and in the A+T-rich sequence. Thus, these repetitive elements do not appear to be directly expressible protein coding sequences. The sequence of one region from five different repetitive elements was compared with the homologous region of the MgPa gene from the type strain G37 and four newly isolated M. genitalium strains. Recombination between repetitive elements of strain G37 and the MgPa operon can explain the majority of polymorphisms within our partial sequences of the MgPa genes of the new isolates. Therefore, we propose that the repetitive elements of M. genitalium provide a reservoir of sequence that contributes to antigenic variation in proteins of the MgPa cellular adhesion operon.