21 resultados para Comparative Genomic Hybridization


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aberrations of the long arm of chromosome 11 are among the most common chromosome abnormalities in lymphoproliferative disorders (LPD). Translocations involving BCL1 at 11q13 are strongly associated with mantle cell lymphoma. other nonrandom aberrations, especially deletions and, less frequently, translocations, involving bands 11q21-923 have been identified by chromosome banding analysis. To date, the critical genomic segment and candidate genes involved in these deletions have not been identified. In the present study, we have analyzed tumors from 43 patients with LPD (B-cell chronic lymphocytic leukemia, n = 40; mantle cell lymphoma, n = 3) showing aberrations of bands 11q21-923 by fluorescence in situ hybridization. As probes we used Alu-PCR products from 17 yeast artificial chromosome clones spanning chromosome bands 11q14.3-923.3, including a panel of yeast artificial chromosome clones recognizing a contiguous genomic DNA fragment of approximately 9-10 Mb in bands 11q22.3-923.3. In the 41 tumors exhibiting deletions, we identified a commonly deleted segment in band 11q22.3-923.1; this region is approximately 2-3 Mb in size and contains the genes coding for ATM (ataxia telangiectasia mutated), RDX (radixin), and FDX1 (ferredoxin 1). Furthermore, two translocation break-points were localized to a 1.8-Mb genomic fragment contained within the commonly deleted segment. Thus, we have identified a single critical region of 2-3 Mb in size in which 11q14-923 aberrations in LPD cluster. This provides the basis for the identification of the gene(s) at 11q22.3-923.1 that are involved in the pathogenesis of LPD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microsatellites, tandem arrays of short (2-5 bp) nucleotide motifs, are present in high numbers in most eukaryotic genomes. We have characterized the physical distribution of microsatellites on chromosomes of sugar beet (Beta vulgaris L.). Each microsatellite sequence shows a characteristic genomic distribution and motif-dependent dispersion, with site-specific amplification on one to seven pairs of centromeres or intercalary chromosomal regions and weaker, dispersed hybridization along chromosomes. Exclusion of some microsatellites from 18S-5.8S-25S rRNA gene sites, centromeres, and intercalary sites was observed. In-gel and in situ hybridization patterns are correlated, with highly repeated restriction fragments indicating major centromeric sites of microsatellite arrays. The results have implications for genome evolution and the suitability of particular microsatellite markers for genetic mapping and genome analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A DNA sequence, TPE1, representing the internal domain of a Ty1-copia retroelement, was isolated from genomic DNA of Pinus elliottii Engelm. var. elliottii (slash pine). Genomic Southern analysis showed that this sequence, carrying partial reverse transcriptase and integrase gene sequences, is highly amplified within the genome of slash pine and part of a dispersed element >4.8 kbp. Fluorescent in situ hybridization to metaphase chromosomes shows that the element is relatively uniformly dispersed over all 12 chromosome pairs and is highly abundant in the genome. It is largely excluded from centromeric regions and intercalary chromosomal sites representing the 18S-5.8S-25S rRNA genes. Southern hybridization with specific DNA probes for the reverse transcriptase gene shows that TPE1 represents a large subgroup of heterogeneous Ty1-copia retrotransposons in Pinus species. Because no TPE1 transcription could be detected, it is most likely an inactive element--at least in needle tissue. Further evidence for inactivity was found in recombinant reverse transcriptase and integrase sequences. The distribution of TPE1 within different gymnosperms that contain Ty1-copia group retrotransposons, as shown by a PCR assay, was investigated by Southern hybridization. The TPE1 family is highly amplified and conserved in all Pinus species analyzed, showing a similar genomic organization in the three- and five-needle pine species investigated. It is also present in spruce, bald cypress (swamp cypress), and in gingko but in fewer copies and a different genomic organization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Representational difference analysis was used to identify strain-specific differences in the pseudoautosomal region (PAR) of mouse X and Y chromosomes. One second generation (C57BL/6 x Mus spretus) x Mus spretus interspecific backcross male carrying the C57BL/6 (B6) PAR was used for tester DNA. DNA from five backcross males from the same generation that were M. spretus-type for the PAR was pooled for the driver. A cloned probe designated B6-38 was recovered that is B6-specific in Southern analysis. Analysis of genomic DNA from several inbred strains of laboratory mice and diverse Mus species and subspecies identified a characteristic Pst I pattern of fragment sizes that is present only in the C57BL family of strains. Hybridization was observed with sequences in DBA/2J and to a limited extent with Mus musculus (PWK strain) and Mus castaneus DNA. No hybridization was observed in DNA of different Mus species, M. spretus, M. hortulanus, and M. caroli. Genetic analyses of B6-38 was conducted using C57BL congenic males that carry M. spretus alleles for distal X chromosome loci and the PAR and outcrosses of heterozygous congenic females with M. spretus. These analyses demonstrated that the B6-38 sequences were inherited with both the X and Y chromosome. B6-38 sequences were genetically mapped as a locus within the PAR using two interspecific backcrosses. The locus defined by B6-38 is designated DXYRp1. Preliminary analyses of recombination between the distal X chromosome gene amelogenin (Amg) and the PAR loci for either TelXY or sex chromosome association (Sxa) suggest that the locus DXYRp1 maps to the distal portion of the PAR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the mouse delta-opioid receptor cDNA as a probe, we have isolated genomic clones encoding the human mu- and kappa-opioid receptor genes. Their organization appears similar to that of the human delta receptor gene, with exon-intron boundaries located after putative transmembrane domains 1 and 4. The kappa gene was mapped at position q11-12 in human chromosome 8. A full-length cDNA encoding the human kappa-opioid receptor has been isolated. The cloned receptor expressed in COS cells presents a typical kappa 1 pharmacological profile and is negatively coupled to adenylate cyclase. The expression of kappa-opioid receptor mRNA in human brain, as estimated by reverse transcription-polymerase chain reaction, is consistent with the involvement of kappa-opioid receptors in pain perception, neuroendocrine physiology, affective behavior, and cognition. In situ hybridization studies performed on human fetal spinal cord demonstrate the presence of the transcript specifically in lamina II of the dorsal horn. Some divergences in structural, pharmacological, and anatomical properties are noted between the cloned human and rodent receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescence in situ hybridization (FISH) is a powerful tool for physical mapping in human and other mammalian species. However, application of the FISH technique has been limited in plant species, especially for mapping single- or low-copy DNA sequences, due to inconsistent signal production in plant chromosome preparations. Here we demonstrate that bacterial artificial chromosome (BAC) clones can be mapped readily on rice (Oryza sativa L.) chromosomes by FISH. Repetitive DNA sequences in BAC clones can be suppressed efficiently by using rice genomic DNA as a competitor in the hybridization mixture. BAC clones as small as 40 kb were successfully mapped. To demonstrate the application of the FISH technique in physical mapping of plant genomes, both anonymous BAC clones and clones closely linked to a rice bacterial blight-resistance locus, Xa21, were chosen for analysis. The physical location of Xa21 and the relationships among the linked clones were established, thus demonstrating the utility of FISH in plant genome analysis.