81 resultados para Chromosomal rearrangements


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the bacterial families Haemophilus and Neisseria, important human pathogens that commonly colonize the nasopharynx, are naturally competent for DNA uptake from their environment. In each genus this process is discriminant in favor of its own and against foreign DNA through sequence specificity of DNA receptors. The Haemophilus DNA uptake apparatus binds a 29-bp oligonucleotide domain containing a highly conserved 9-bp core sequence, whereas the neisserial apparatus binds a 10-bp motif. Each motif (“uptake sequence”, US) is highly over-represented in the chromosome of the corresponding genus, particularly concentrated with core sequences in inverted pairs forming gene terminators. Two Haemophilus core USs were unexpectedly found forming the terminator of sodC in Neisseria meningitidis (meningococcus), and sequence analysis strongly suggests that this virulence gene, located next to IS1106, arose through horizontal transfer from Haemophilus. By using USs as search strings in a computer-based analysis of genome sequence, it was established that while USs of the “wrong” genus do not occur commonly in Neisseria or Haemophilus, where they do they are highly likely to flag domains of chromosomal DNA that have been transferred from Haemophilus. Three independent domains of Haemophilus-like DNA were found in the meningococcal chromosome, associated respectively with the virulence gene sodC, the bio gene cluster, and an unidentified orf. This report identifies intergenerically transferred DNA and its source in bacteria, and further identifies transformation with heterologous chromosomal DNA as a way of establishing potentially important chromosomal mosaicism in these pathogenic bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We performed a comprehensive analysis of T cell receptor (TCR) γ rearrangements in T cell precursors of the mouse adult thymus. Using a sensitive quantitative PCR method, we show that TCRγ rearrangements are present in CD44+CD25+ Pro-T thymocytes much earlier than expected. TCRγ rearrangements increase significantly from the Pro-T to the CD44−CD25+ Pre-T cell transition, and follow different patterns depending on each Vγ gene segment, suggesting that ordered waves of TCRγ rearrangement exist in the adult mouse thymus as has been described in the fetal mouse thymus. Recombinations of TCRγ genes occur concurrently with TCRδ and D-Jβ rearrangements, but before Vβ gene assembly. Productive TCRγ rearrangements do not increase significantly before the Pre-T cell stage and are depleted in CD4+CD8+ double-positive cells from normal mice. In contrast, double-positive thymocytes from TCRδ−/− mice display random proportions of TCRγ rearranged alleles, supporting a role for functional TCRγ/δ rearrangements in the γδ divergence process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The repair of chromosomal double-strand breaks (DSBs) is necessary for genomic integrity in all organisms. Genetic consequences of misrepair include chromosomal loss, deletion, and duplication resulting in loss of heterozygosity (LOH), a common finding in human solid tumors. Although work with radiation-sensitive cell lines suggests that mammalian cells primarily rejoin DSBs by nonhomologous mechanisms, alternative mechanisms that are implicated in chromosomal LOH, such as allelic recombination, may also occur. We have examined chromosomal DSB repair between homologs in a gene targeted mammalian cell line at the retinoblastoma (Rb) locus. We have found that allelic recombinational repair occurs in mammalian cells and is increased at least two orders of magnitude by the induction of a chromosomal DSB. One consequence of allelic recombination is LOH at the Rb locus. Some of the repair events also resulted in other types of genetic instability, including deletions and duplications. We speculate that mammalian cells may have developed efficient nonhomologous DSB repair processes to bypass allelic recombination and the potential for reduction to homozygosity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Chinese hamster ovary (CHO) mutant UV40 cell line is hypersensitive to UV and ionizing radiation, simple alkylating agents, and DNA cross-linking agents. The mutant cells also have a high level of spontaneous chromosomal aberrations and 3-fold elevated sister chromatid exchange. We cloned and sequenced a human cDNA, designated XRCC9, that partially corrected the hypersensitivity of UV40 to mitomycin C, cisplatin, ethyl methanesulfonate, UV, and γ-radiation. The spontaneous chromosomal aberrations in XRCC9 cDNA transformants were almost fully corrected whereas sister chromatid exchanges were unchanged. The XRCC9 genomic sequence was cloned and mapped to chromosome 9p13. The translated XRCC9 sequence of 622 amino acids has no similarity with known proteins. The 2.5-kb XRCC9 mRNA seen in the parental cells was undetectable in UV40 cells. The mRNA levels in testis were up to 10-fold higher compared with other human tissues and up to 100-fold higher compared with other baboon tissues. XRCC9 is a candidate tumor suppressor gene that might operate in a postreplication repair or a cell cycle checkpoint function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonpathogenic, resident bacteria participate in the pathogenesis of inflammation in the small intestine, but the molecular messages produced by such bacteria are unknown. Inflammatory responses involve the recruitment of specific leukocyte subsets. We, therefore, hypothesized that butyrate, a normal bacterial metabolite, may modulate chemokine secretion by epithelial cells, by amplifying their response to proinflammatory signals. We studied the expression of the chemokine, macrophage inflammatory protein-2 (MIP-2) by the rat small intestinal epithelial cell line, IEC-6. Cells were stimulated with lipopolysaccharide or with interleukin 1β (IL-1β) and incubated with sodium butyrate. Acetylation of histones was examined in Triton X acetic acid–urea gels by PAGE. Unstimulated IEC-6 cells did not secrete MIP-2. However, lipopolysaccharide and IL-1β induced MIP-2 expression. Butyrate enhanced MIP-2 secretion both in lipopolysaccharide-stimulated and IL-1β-stimulated enterocytes; but butyrate alone did not induce MIP-2 expression. Butyrate increased the acetylation of histones extracted from the nuclei of IEC-6 cells. Furthermore, acetylation of histones (induced by trichostatin A, a specific inhibitor of histone deacetylase) enhanced MIP-2 expression by cells stimulated with IL-1β. In conclusion, trichostatin A reproduced the effects of butyrate on MIP-2 secretion. Butyrate, therefore, increases MIP-2 secretion in stimulated cells by increasing histone acetylation. We speculate that butyrate carries information from bacteria to epithelial cells. Epithelial cells transduce this signal through histone deacetylase, modulating the secretion of chemokines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Podospora anserina is a filamentous fungus with a limited life span. Life span is controlled by nuclear and extranuclear genetic traits. Herein we report the nature of four alterations in the nuclear gene grisea that lead to an altered morphology, a defect in the formation of female gametangia, and an increased life span. Three sequence changes are located in the 5′ upstream region of the grisea ORF. One mutation is a G → A transition at the 5′ splice site of the single intron of the gene, leading to a RNA splicing defect. This loss-of-function affects the amplification of the first intron of the mitochondrial cytochrome c oxidase subunit I gene (COI) and the specific mitochondrial DNA rearrangements that occur during senescence of wild-type strains. Our results indicate that the nuclear gene grisea is part of a molecular machinery involved in the control of mitochondrial DNA reorganizations. These DNA instabilities accelerate but are not a prerequisite for the aging of P. anserina cultures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autonomously replicating sequence (ARS) elements, which function as the cis-acting chromosomal replicators in the yeast Saccharomyces cerevisiae, depend upon an essential copy of the 11-bp ARS consensus sequence (ACS) for activity. Analysis of the chromosome III replicator ARS309 unexpectedly revealed that its essential ACS differs from the canonical ACS at two positions. One of the changes observed in ARS309 inactivates other ARS elements. This atypical ACS binds the origin recognition complex efficiently and is required for chromosomal replication origin activity. Comparison of the essential ACS of ARS309 with the essential regions of other ARS elements revealed an expanded 17-bp conserved sequence that efficiently predicts the essential core of ARS elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromosomal translocations induced by ionizing radiation and radiomimetic drugs are thought to arise by incorrect joining of DNA double-strand breaks. To dissect such misrepair events at a molecular level, large-scale, bleomycin-induced rearrangements in the aprt gene of Chinese hamster ovary D422 cells were mapped, the breakpoints were sequenced, and the original non-aprt parental sequences involved in each rearrangement were recovered from nonmutant cells. Of seven rearrangements characterized, six were reciprocal exchanges between aprt and unrelated sequences. Consistent with a mechanism involving joining of exchanged double-strand break ends, there was, in most cases, no homology between the two parental sequences, no overlap in sequences retained at the two newly formed junctions, and little or no loss of parental sequences (usually ≤2 bp) at the breakpoints. The breakpoints were strongly correlated (P < 0.0001) with expected sites of bleomycin-induced, double-strand breaks. Fluorescence in situ hybridization indicated that, in six of the mutants, the rearrangement was accompanied by a chromosomal translocation at the aprt locus, because upstream and downstream flanking sequences were detected on separate chromosomes. The results suggest that repair of free radical-mediated, double-strand breaks in confluence-arrested cells is effected by a conservative, homology-independent, end-joining pathway that does not involve single-strand intermediate and that misjoining of exchanged ends by this pathway can directly result in chromosomal translocations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultra-long telomeres that have been observed in mice are not in accordance with the concept that critical telomere shortening is related to aging and immortalization. Here, we have used quantitative fluorescence in situ hybridization to estimate (T2AG3)n lengths of individual telomeres in various mouse strains. Telomere lengths were very heterogeneous, but specific chromosomes of bone marrow cells and skin fibroblasts from individual mice had similar telomere lengths. We estimate that the shortest telomeres are around 10 kb in length, indicating that each mouse cell has a few telomeres with (T2AG3)n lengths within the range of human telomeres. These short telomeres may be critical in limiting the replicative potential of murine cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sensitive and precise in vitro technique for detecting DNA strand discontinuities produced in vivo has been developed. The procedure, a form of runoff DNA synthesis on molecules released from lysed bacterial cells, mapped precisely the position of cleavage of the plasmid pMV158 leading strand origin in Streptococcus pneumoniae and the site of strand scission, nic, at the transfer origins of F and the F-like plasmid R1 in Escherichia coli. When high frequency of recombination strains of E. coli were examined, DNA strand discontinuities at the nic positions of the chromosomally integrated fertility factors were also observed. Detection of DNA strand scission at the nic position of F DNA in the high frequency of recombination strains, as well as in the episomal factors, was dependent on sexual expression from the transmissable element, but was independent of mating. These results imply that not only the transfer origins of extrachromosomal F and F-like fertility factors, but also the origins of stably integrated copies of these plasmids, are subject to an equilibrium of cleavage and ligation in vivo in the absence of DNA transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depletion of poly(ADP-ribose) polymerase (PARP) increases the frequency of recombination, gene amplification, sister chromatid exchanges, and micronuclei formation in cells exposed to genotoxic agents, implicating PARP in the maintenance of genomic stability. Flow cytometric analysis now has revealed an unstable tetraploid population in immortalized fibroblasts derived from PARP−/− mice. Comparative genomic hybridization detected partial chromosomal gains in 4C5-ter, 5F-ter, and 14A1-C1 in PARP−/−mice and immortalized PARP−/−fibroblasts. Neither the chromosomal gains nor the tetraploid population were apparent in PARP−/− cells stably transfected with PARP cDNA [PARP−/−(+PARP)], indicating negative selection of cells with these genetic aberrations after reintroduction of PARP cDNA. Although the tumor suppressor p53 was not detectable in PARP−/− cells, p53 expression was partially restored in PARP−/− (+PARP) cells. Loss of 14D3-ter that encompasses the tumor suppressor gene Rb-1 in PARP−/− mice was associated with a reduction in retinoblastoma(Rb) expression; increased expression of the oncogene Jun was correlated with a gain in 4C5-ter that harbors this oncogene. These results further implicate PARP in the maintenance of genomic stability and suggest that altered expression of p53, Rb, and Jun, as well as undoubtedly many other proteins may be a result of genomic instability associated with PARP deficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The parasitic bacterium Mycoplasma genitalium has a small, reduced genome with close to a basic set of genes. As a first step toward determining the families of protein domains that form the products of these genes, we have used the multiple sequence programs psi-blast and geanfammer to match the sequences of the 467 gene products of M. genitalium to the sequences of the domains that form proteins of known structure [Protein Data Bank (PDB) sequences]. PDB sequences (274) match all of 106 M. genitalium sequences and some parts of another 85; thus, 41% of its total sequences are matched in all or part. The evolutionary relationships of the PDB domains that match M. genitalium are described in the structural classification of proteins (SCOP) database. Using this information, we show that the domains in the matched M. genitalium sequences come from 114 superfamilies and that 58% of them have arisen by gene duplication. This level of duplication is more than twice that found by using pairwise sequence comparisons. The PDB domain matches also describe the domain structure of the matched sequences: just over a quarter contain one domain and the rest have combinations of two or more domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein phosphatase 2A (PP2A) is an abundant, multifunctional serine/threonine-specific phosphatase that stimulates simian virus 40 DNA replication. The question as to whether chromosomal DNA replication also depends on PP2A was addressed by using a cell-free replication system derived from Xenopus laevis eggs. Immunodepletion of PP2A from Xenopus egg extract resulted in strong inhibition of DNA replication. PP2A was required for the initiation of replication but not for the elongation of previously engaged replication forks. Therefore, the initiation of chromosomal DNA replication depends not only on phosphorylation by protein kinases but also on dephosphorylation by PP2A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Targeting of gene regulatory factors to specific intranuclear sites may be critical for the accurate control of gene expression. The acute myelogenous leukemia 8;21 (AML1/ETO) fusion protein is encoded by a rearranged gene created by the ETO chromosomal translocation. This protein lacks the nuclear matrix-targeting signal that directs the AML1 protein to appropriate gene regulatory sites within the nucleus. Here we report that substitution of the chromosome 8-derived ETO protein for the multifunctional C terminus of AML1 precludes targeting of the factor to AML1 subnuclear domains. Instead, the AML1/ETO fusion protein is redirected by the ETO component to alternate nuclear matrix-associated foci. Our results link the ETO chromosomal translocation in AML with modifications in the intranuclear trafficking of the key hematopoietic regulatory factor, AML1. We conclude that misrouting of gene regulatory factors as a consequence of chromosomal translocations is an important characteristic of acute leukemias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hsd genes of Mycoplasma pulmonis encode restriction and modification enzymes exhibiting a high degree of sequence similarity to the type I enzymes of enteric bacteria. The S subunits of type I systems dictate the DNA sequence specificity of the holoenzyme and are required for both the restriction and the modification reactions. The M. pulmonis chromosome has two hsd loci, both of which contain two hsdS genes each and are complex, site-specific DNA inversion systems. Embedded within the coding region of each hsdS gene are a minimum of three sites at which DNA inversions occur to generate extensive amino acid sequence variations in the predicted S subunits. We show that the polymorphic hsdS genes produced by gene rearrangement encode a family of functional S subunits with differing DNA sequence specificities. In addition to creating polymorphisms in hsdS sequences, DNA inversions regulate the phase-variable production of restriction activity because the other genes required for restriction activity (hsdR and hsdM) are expressed only from loci that are oriented appropriately in the chromosome relative to the hsd promoter. These data cast doubt on the prevailing paradigms that restriction systems are either selfish or function to confer protection from invasion by foreign DNA.