59 resultados para Cell-population
Resumo:
The purification of primitive human hematopoietic stem cells has been impaired by the absence of repopulation assays. By using a stringent two-step strategy involving depletion of lineage-positive cells followed by fluorescence-activated cell sorting, we have purified a cell population that is highly enriched for cells capable of multilineage repopulation in nonobese diabetic/severe combined immunodeficient (NOD/SCID) recipients. These SCID-repopulating cells (SRCs) were exclusively found in a cell fraction that expressed high levels of CD34 and no CD38. Through limiting dilution analysis using Poisson statistics, we calculated a frequency of 1 SRC in 617 CD34+ CD38− cells. The highly purified SRC were capable of extensive proliferation in NOD/SCID mice. Mice transplanted with 1 SRC (at limiting cell doses) were able to produce approximately 400,000 progeny 6 weeks after the transplant. Detailed flow cytometric analysis of the marrow of highly engrafted mice demonstrated both lymphoid and myeloid differentiation, as well as the retention of a significant fraction of CD34+ CD38− cells. These highly purified fractions should be useful for identification of the cellular and molecular mechanisms that regulate primitive human hematopoietic cells. Moreover, the ability to detect and purify primitive cells provides a means to develop conditions for maintaining and/or expanding these cells during in vitro culture.
Resumo:
We have identified a developmentally essential gene, UbcB, by insertional mutagenesis. The encoded protein (UBC1) shows very high amino acid sequence identity to ubiquitin-conjugating enzymes from other organisms, suggesting that UBC1 is involved in protein ubiquitination and possibly degradation during Dictyostelium development. Consistent with the homology of the UBC1 protein to UBCs, the developmental pattern of protein ubiquitination is altered in ubcB-null cells. ubcB-null cells are blocked in the ability to properly execute the developmental transition that occurs between the induction of postaggregative gene expression during mound formation and the induction of cell-type differentiation and subsequent morphogenesis. ubcB-null cells plated on agar form mounds with normal kinetics; however, they remain at this stage for ∼10 h before forming multiple tips and fingers that then arrest. Under other conditions, some of the fingers form migrating slugs, but no culmination is observed. In ubcB-null cells, postaggregative gene transcripts accumulate to very high levels and do not decrease significantly with time as they do in wild-type cells. Expression of cell-type-specific genes is very delayed, with the level of prespore-specific gene expression being significantly reduced compared with that in wild-type cells. lacZ reporter studies using developmentally regulated and cell-type-specific promoters suggest that ubcB-null cells show an unusually elevated level of staining of lacZ reporters expressed in anterior-like cells, a regulatory cell population found scattered throughout the aggregate, and reduced staining of a prespore reporter. ubcB-null cells in a chimeric organism containing predominantly wild-type cells are able to undergo terminal differentiation but show altered spatial localization. In contrast, in chimeras containing only a small fraction of wild-type cells, the mature fruiting body is very small and composed almost exclusively of wild-type cells, with the ubcB-null cells being present as a mass of cells located in extreme posterior of the developing organism. The amino acid sequence analysis of the UbcB open reading frame (ORF) and the analysis of the developmental phenotypes suggest that tip formation and subsequent development requires specific protein ubiquitination, and possibly degradation.
Resumo:
It has long been known that rearrangements of chromosomes through breakage-fusion-bridge (BFB) cycles may cause variability of phenotypic and genetic traits within a cell population. Because intercellular heterogeneity is often found in neoplastic tissues, we investigated the occurrence of BFB events in human solid tumors. Evidence of frequent BFB events was found in malignancies that showed unspecific chromosome aberrations, including ring chromosomes, dicentric chromosomes, and telomeric associations, as well as extensive intratumor heterogeneity in the pattern of structural changes but not in tumors with tumor-specific aberrations and low variability. Fluorescence in situ hybridization analysis demonstrated that chromosomes participating in anaphase bridge formation were involved in a significantly higher number of structural aberrations than other chromosomes. Tumors with BFB events showed a decreased elimination rate of unstable chromosome aberrations after irradiation compared with normal cells and other tumor cells. This result suggests that a combination of mitotically unstable chromosomes and an elevated tolerance to chromosomal damage leads to constant genomic reorganization in many malignancies, thereby providing a flexible genetic system for clonal evolution and progression.
Resumo:
We have identified and characterized an Arabidopsis thaliana rad50 mutant plant containing a T-DNA insertion in the AtRAD50 gene and showing both meiotic and DNA repair defects. We report here that rad50/rad50 mutant cells show a progressive shortening of telomeric DNA relative to heterozygous rad50/RAD50 controls and that the mutant cell population rapidly enters a crisis, with the majority of the cells dying. Surviving rad50 mutant cells have longer telomeres than wild-type cells, indicating the existence in plants of an alternative RAD50-independent mechanism for telomere maintenance. These results report the role of a protein essential for double-strand break repair in telomere maintenance in higher eukaryotes.
Resumo:
Mutations in Tg737 cause a wide spectrum of phenotypes, including random left-right axis specification, polycystic kidney disease, liver and pancreatic defects, hydrocephalus, and skeletal patterning abnormalities. To further assess the biological function of Tg737 and its role in the mutant pathology, we identified the cell population expressing Tg737 and determined the subcellular localization of its protein product called Polaris. Tg737 expression is associated with cells possessing either motile or immotile cilia and sperm. Similarly, Polaris concentrated just below the apical membrane in the region of the basal bodies and within the cilia or flagellar axoneme. The data suggest that Polaris functions in a ciliogenic pathway or in cilia maintenance, a role supported by the loss of cilia on the ependymal cell layer in ventricles of Tg737orpk brains and by the lack of node cilia in Tg737Δ2-3βGal mutants.
Resumo:
We have previously described how T and natural killer (NK) lineage commitment proceeds from common T/NK progenitors (p-T/NK) in the murine fetal thymus (FT), with the use of a clonal assay system capable of discriminating p-T/NK from unipotent T or NK lineage-committed progenitors (p-T and p-NK, respectively). The molecular mechanisms controlling the commitment processes, however, are yet to be defined. In this study, we investigated the progenitor activity of FT cells from Id2−/− mice that exhibit defective NK cell development. In the Id2−/− FT, NK cells were greatly reduced, and a cell population that exclusively contains p-NK in the wild-type thymus was completely missing. Id2−/− FT progenitors were unable to differentiate into NK cells in IL-2-supplemented-FT organ culture. Single progenitor analysis demonstrated that all Id2−/− fetal thymic progenitors are destined for the T cell lineage, whereas progenitors for T/NK, T, and NK cell lineages were found in the control. Interestingly, the total progenitor number was similar between Id2−/− and Id2+/+ embryos analyzed. Expression of Id2 was correlated with p-NK activity. Our results suggest that Id2 is indispensable in thymic NK cell development, where it most probably restricts bipotent T/NK progenitors to the NK cell lineage.
Resumo:
The transcriptional effects of deregulated myc gene overexpression are implicated in tumorigenesis in a spectrum of experimental and naturally occurring neoplasms. In follicles of the chicken bursa of Fabricius, myc induction of B-cell neoplasia requires a target cell population present during early bursal development and progresses through preneoplastic transformed follicles to metastatic lymphomas. We developed a chicken immune system cDNA microarray to analyze broad changes in gene expression that occur during normal embryonic B-cell development and during myc-induced neoplastic transformation in the bursa. The number of mRNAs showing at least 3-fold change was greater during myc-induced lymphomagenesis than during normal development, and hierarchical cluster analysis of expression patterns revealed that levels of several hundred mRNAs varied in concert with levels of myc overexpression. A set of 41 mRNAs were most consistently elevated in myc-overexpressing preneoplastic and neoplastic cells, most involved in processes thought to be subject to regulation by Myc. The mRNAs for another cluster of genes were overexpressed in neoplasia independent of myc expression level, including a small subset with the expression signature of embryonic bursal lymphocytes. Overexpression of myc, and some of the genes overexpressed with myc, may be important for generation of preneoplastic transformed follicles. However, expression profiles of late metastatic tumors showed a large variation in concert with myc expression levels, and some showed minimal myc overexpression. Therefore, high-level myc overexpression may be more important in the early induction of these lymphomas than in maintenance of late-stage metastases.
Resumo:
Friend of GATA (FOG) proteins regulate GATA factor-activated gene transcription. During vertebrate hematopoiesis, FOG and GATA proteins cooperate to promote erythrocyte and megakaryocyte differentiation. The Drosophila FOG homologue U-shaped (Ush) is expressed similarly in the blood cell anlage during embryogenesis. During hematopoiesis, the acute myeloid leukemia 1 homologue Lozenge and Glial cells missing are required for the production of crystal cells and plasmatocytes, respectively. However, additional factors have been predicted to control crystal cell proliferation. In this report, we show that Ush is expressed in hemocyte precursors and plasmatocytes throughout embryogenesis and larval development, and the GATA factor Serpent is essential for Ush embryonic expression. Furthermore, loss of ush function results in an overproduction of crystal cells, whereas forced expression of Ush reduces this cell population. Murine FOG-1 and FOG-2 also can repress crystal cell production, but a mutant version of FOG-2 lacking a conserved motif that binds the corepressor C-terminal binding protein fails to affect the cell lineage. The GATA factor Pannier (Pnr) is required for eye and heart development in Drosophila. When Ush, FOG-1, FOG-2, or mutant FOG-2 is coexpressed with Pnr during these developmental processes, severe eye and heart phenotypes result, consistent with a conserved negative regulation of Pnr function. These results indicate that the fly and mouse FOG proteins function similarly in three distinct cellular contexts in Drosophila, but may use different mechanisms to regulate genetic events in blood vs. cardial or eye cell lineages.
Resumo:
Current gene therapy protocols for HIV infection use transfection or murine retrovirus mediated transfer of antiviral genes into CD4+ T cells or CD34+ progenitor cells ex vivo, followed by infusion of the gene altered cells into autologous or syngeneic/allogeneic recipients. While these studies are essential for safety and feasibility testing, several limitations remain: long-term reconstitution of the immune system is not effected for lack of access to the macrophage reservoir or the pluripotent stem cell population, which is usually quiescent, and ex vivo manipulation of the target cells will be too expensive and impractical for global application. In these regards, the lentivirus-specific biologic properties of the HIVs, which underlie their pathogenetic mechanisms, are also advantageous as vectors for gene therapy. The ability of HIV to specifically target CD4+ cells, as well as non-cycling cells, makes it a promising candidate for in vivo gene transfer vector on one hand, and for transduction of non-cycling stem cells on the other. Here we report the use of replication-defective vectors and stable vector packaging cell lines derived from both HIV-1 and HIV-2. Both HIV envelopes and vesicular stomatitis virus glycoprotein G were effective in mediating high-titer gene transfer, and an HIV-2 vector could be cross-packaged by HIV-1. Both HIV-1 and HIV-2 vectors were able to transduce primary human macrophages, a property not shared by murine retroviruses. Vesicular stomatitis virus glycoprotein G-pseudotyped HIV vectors have the potential to mediate gene transfer into non-cycling hematopoietic stem cells. If so, HIV or other lentivirus-based vectors will have applications beyond HIV infection.
Resumo:
The majority of T lymphocytes start to develop at around day 15 of gestation (d15)-d17 in the thymus and comprise the peripheral repertoire characterized by the expression of polymorphic T-cell antigen receptors (TCRs). Contrary to these conventional T cells, a subset of T cells, called natural killer (NK) T cells (most of them expressing an invariant TCR encoded by the Valpha14Jalpha281 gene with a 1-nt N-region), preferentially differentiates extrathymically and dominates the peripheral T-cell population at a high frequency (5% in splenic T cells and 40% in bone marrow T cells). Here, we investigated the development of NK T cells and found that the invariant Valpha14+ TCR transcripts and the circular DNA created by Valpha14 and Jalpha281 gene rearrangements can be detected in the embryo body at d9.5 of gestation and in the yolk sac and the fetal liver at d11.5-d13.5 of gestation, but not in the thymus, whereas T cells with Valpha1+ TCR expression, a major population in the thymus, were not observed at these early stages of gestation. Fluorescence-activated cell sorter analysis also demonstrated that there exist CD3+ alpha beta+ T cells, almost all of which are Valpha14/Vbeta8+ NK+ T cells, during early embryogenesis. To our knowledge, this demonstrates for the first time that a T lymphocyte subset develops in extrathymic tissues during the early stages of embryogenesis.
Resumo:
T lymphocytes recognize specific ligands by clonally distributed T-cell receptors (TCR). In humans and most animals, the vast majority of T cells express a TCR composed of an alpha chain and a beta chain, whereas a minor T-cell population is characterized by the TCR gamma/delta. Almost all of our knowledge about T cells stems from alpha/beta T cells and only now are we beginning to understand gamma/delta T cells. In contrast to conventional alpha/beta T cells, which are specific for antigenic peptides presented by gene products of the major histocompatibility complex, gamma/delta T cells directly recognize proteins and even nonproteinacious phospholigands. These findings reveal that gamma/delta T cells and alpha/beta T cells recognize antigen in a fundamentally different way and hence mitigate the dogma of exclusive peptide-major histocompatibility complex recognition by T cells. A role for gamma/delta T cells in antimicrobial immunity has been firmly established. Although some gamma/delta T cells perform effector functions, regulation of the professional and the nonprofessional immune system seems to be of at least equal importance. The prominent residence of gamma/delta T cells in epithelial tissues and the rapid mobilization of gamma/delta T cells in response to infection are consistent with such regulatory activities under physiological and pathologic conditions. Thus, although gamma/delta T cells are a minor fraction of all T cells, they are not just uninfluential kin of alpha/beta T cells but have their unique raison d'être.
Resumo:
Gene transduction of pluripotent human hematopoietic stem cells (HSCs) is necessary for successful gene therapy of genetic disorders involving hematolymphoid cells. Evidence for transduction of pluripotent HSCs can be deduced from the demonstration of a retroviral vector integrated into the same cellular chromosomal DNA site in myeloid and lymphoid cells descended from a common HSC precursor. CD34+ progenitors from human bone marrow and mobilized peripheral blood were transduced by retroviral vectors and used for long-term engraftment in immune-deficient (beige/nude/XIS) mice. Human lymphoid and myeloid populations were recovered from the marrow of the mice after 7-11 months, and individual human granulocyte-macrophage and T-cell clones were isolated and expanded ex vivo. Inverse PCR from the retroviral long terminal repeat into the flanking genomic DNA was performed on each sorted cell population. The recovered cellular DNA segments that flanked proviral integrants were sequenced to confirm identity. Three mice were found (of 24 informative mice) to contain human lymphoid and myeloid populations with identical proviral integration sites, confirming that pluripotent human HSCs had been transduced.
Resumo:
Three major characteristics of aging in animals are a slowdown of cell proliferation, an increase in residual bodies associated with age pigments, and a marked increase in the likelihood of neoplastic transformation. The 28 L subline of the NIH 3T3 line of mouse embryo fibroblasts exhibits all these characteristics when held at confluence for extended periods. The impairment of proliferation is the first behavioral characteristic detected in low density subcultures from the confluent cultures, and it persists through many cell generations of exponential multiplication. There is an equal degree of growth impairment among replicate cultures (lineages) recovered after each of 2 successive rounds of confluence, although heterogeneity appears after the third round. The growth impairment pervades the entire cell population of each lineage. The degree and duration of impairment increase with repeated rounds of confluence. A marked increase of residual bodies characteristic of age pigments occurs in the cytoplasm of all the cells kept under prolonged confluence. Neoplastic transformation first appears as foci of multilayered cells on a monolayered background of nontransformed cells. The transformed cells arise at different times in the lineages and originate from a very small fraction of the population. The transformed cells selectively overgrow the entire population in successive rounds of confluence leading to an increase in saturation density of each lineage at different times. Under cloning conditions, isolated colonies of transformed cells develop more slowly than colonies of nontransformed cells but eventually reach a higher population density. The regularity of persistent growth impairment among the lineages and the appearance of large numbers of residual bodies in all the cells of each population are more characteristic of an epigenetic process than of specific local mutations. although random chromosomal lesions cannot be ruled out. By contrast, the low frequency and stochastic character of neoplastic transformation are consistent with a conventional genetic origin. The advent in long-term confluent NIH 3T3 cultures of three cardinal characteristics of cellular aging in vivo recommends it as a model for aging cells.
Resumo:
SJL mice produce little or no IgE in response to polyclonal stimulation with anti-IgD antibody and fail to express interleukin 4 (IL-4) mRNA in the spleen 5 days after injection of anti-IgD, in contrast to other mouse strains that produce substantial amounts of IgE and IL-4. Because IL-4 is critical in IgE production, the possibility that SJL mice are poor IgE producers because their naive T cells fail to differentiate into IL-4 producers must be seriously considered. IL-4 itself is the principal factor determining that naive T cells develop into IL-4 producers. A major source of IL-4 for such differentiation is a population of CD1-specific CD4+ T cells that express NK1.1. These cells produce IL-4 within 90 min of anti-CD3 injection. T cells from SJL mice fail to produce IL-4 in response to injection of anti-CD3. Similarly, SJL T cells and CD4+ thymocytes do not produce IL-4 in response to acute in vitro stimulation. SJL T cells show a marked deficiency in CD4+ cells that express the surface receptors associated with the NK1.1+ T-cell phenotype. This result indicates that the SJL defect in IgE and IL-4 production is associated with, and may be due to, the absence of the CD4+, NK1.1+ T-cell population.
Resumo:
Human macrophages are believed to damage host tissues in chronic inflammatory disease states, but these cells have been reported to express only modest degradative activity in vitro. However, while examining the ability of human monocytes to degrade the extracellular matrix component elastin, we identified culture conditions under which the cells matured into a macrophage population that displayed a degradative phenotype hundreds of times more destructive than that previously ascribed to any other cell population. The monocyte-derived macrophages synthesized elastinolytic matrix metalloproteinases (i.e., gelatinase B and matrilysin) as well as cysteine proteinases (i.e., cathepsins B, L, and S), but only the cathepsins were detected in the extracellular milieu as fully processed, mature enzymes by either vital fluorescence or active-site labeling. Consistent with these observations, macrophage-mediated elastinolytic activity was not affected by matrix metalloproteinase inhibitors but could be almost completely abrogated by inhibiting cathepsins L and S. These data demonstrate that human macrophages mobilize cysteine proteinases to arm themselves with a powerful effector mechanism that can participate in the pathophysiologic remodeling of the extracellular matrix.