105 resultados para Catalytic activity


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The X and Y domains of phospholipase C (PLC)-gamma1, which are conserved in all mammalian phosphoinositide-specific PLC isoforms and are proposed to interact to form the catalytic site, have been expressed as individual hexahistidine-tagged fusion proteins in the baculovirus system. Following coinfection of insect cells with recombinant viruses, association of X and Y polypeptides was demonstrated in coprecipitation assays. When enzyme activity was examined, neither domain possessed catalytic activity when expressed alone; however, coexpression of the X and Y polypeptides produced a functional enzyme. This reconstituted phospholipase activity remained completely dependent on the presence of free Ca2+. The specific activity of the X:Y complex was significantly greater (20- to 100-fold) than that of holoPLC-gamma1 and was only moderately influenced by varying the concentration of substrate. The enzyme activities of holoPLC-gamma1 and the X:Y complex exhibited distinct pH optima. For holoPLC-gamma1 maximal activity was detected at pH 5.0, while activity of the X:Y complex was maximal at pH 7.2.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hereditary deficiency of factor IXa (fIXa), a key enzyme in blood coagulation, causes hemophilia B, a severe X chromosome-linked bleeding disorder afflicting 1 in 30,000 males; clinical studies have identified nearly 500 deleterious variants. The x-ray structure of porcine fIXa described here shows the atomic origins of the disease, while the spatial distribution of mutation sites suggests a structural model for factor X activation by phospholipid-bound fIXa and cofactor VIIIa. The 3.0-A-resolution diffraction data clearly show the structures of the serine proteinase module and the two preceding epidermal growth factor (EGF)-like modules; the N-terminal Gla module is partially disordered. The catalytic module, with covalent inhibitor D-Phe-1I-Pro-2I-Arg-3I chloromethyl ketone, most closely resembles fXa but differs significantly at several positions. Particularly noteworthy is the strained conformation of Glu-388, a residue strictly conserved in known fIXa sequences but conserved as Gly among other trypsin-like serine proteinases. Flexibility apparent in electron density together with modeling studies suggests that this may cause incomplete active site formation, even after zymogen, and hence the low catalytic activity of fIXa. The principal axes of the oblong EGF-like domains define an angle of 110 degrees, stabilized by a strictly conserved and fIX-specific interdomain salt bridge. The disorder of the Gla module, whose hydrophobic helix is apparent in electron density, can be attributed to the absence of calcium in the crystals; we have modeled the Gla module in its calcium form by using prothrombin fragment 1. The arched module arrangement agrees with fluorescence energy transfer experiments. Most hemophilic mutation sites of surface fIX residues occur on the concave surface of the bent molecule and suggest a plausible model for the membrane-bound ternary fIXa-FVIIIa-fX complex structure: fIXa and an equivalently arranged fX arch across an underlying fVIIIa subdomain from opposite sides; the stabilizing fVIIIa interactions force the catalytic modules together, completing fIXa active site formation and catalytic enhancement.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Escherichia coli RuvC protein is a specific endonuclease that resolves Holliday junctions during homologous recombination. Since the endonucleolytic activity of RuvC requires a divalent cation and since 3 or 4 acidic residues constitute the catalytic centers of several nucleases that require a divalent cation for the catalytic activity, we examined whether any of the acidic residues of RuvC were required for the nucleolytic activity. By site-directed mutagenesis, we constructed a series of ruvC mutant genes with similar amino acid replacements in 1 of the 13 acidic residues. Among them, the mutant genes with an alteration at Asp-7, Glu-66, Asp-138, or Asp-141 could not complement UV sensitivity of a ruvC deletion strain, and the multicopy mutant genes showed a dominant negative phenotype when introduced into a wild-type strain. The products of these mutant genes were purified and their biochemical properties were studied. All of them retained the ability to form a dimer and to bind specifically to a synthetic Holliday junction. However, they showed no, or extremely reduced, endonuclease activity specific for the junction. These 4 acidic residues, which are dispersed in the primary sequence, are located in close proximity at the bottom of the putative DNA binding cleft in the three-dimensional structure. From these results, we propose that these 4 acidic residues constitute the catalytic center for the Holliday junction resolvase and that some of them play a role in coordinating a divalent metal ion in the active center.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The integrase protein of human immunodeficiency virus type 1 is necessary for the stable integration of the viral genome into host DNA. Integrase catalyzes the 3' processing of the linear viral DNA and the subsequent DNA strand transfer reaction that inserts the viral DNA ends into host DNA. Although full-length integrase is required for 3' processing and DNA strand transfer activities in vitro, the central core domain of integrase is sufficient to catalyze an apparent reversal of the DNA strand transfer reaction, termed disintegration. This catalytic core domain, as well as the full-length integrase, has been refractory to structural studies by x-ray crystallography or NMR because of its low solubility and propensity to aggregate. In an attempt to improve protein solubility, we used site-directed mutagenesis to replace hydrophobic residues within the core domain with either alanine or lysine. The single substitution of lysine for phenylalanine at position 185 resulted in a core domain that was highly soluble, monodisperse in solution, and retained catalytic activity. This amino acid change has enabled the catalytic domain of integrase to be crystallized and the structure has been solved to 2.5-A resolution [Dyda, F., Hickman, A. B., Jenkins, T. M., Engelman, A., Craigie, R. & Davies, D. R. (1994) Science 266, 1981-1986]. Systematic replacement of hydrophobic residues may be a useful strategy to improve the solubility of other proteins to facilitate structural and biochemical studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The release of cytotoxic granule contents by cytotoxic T lymphocytes triggers apoptotic target cell death. Cytotoxic granules contain a pore-forming protein, perforin, and a group of serine proteases called granzymes. We expressed human granzyme A in bacteria as a proenzyme capable of in vitro activation by enterokinase. The recombinant activated enzyme has catalytic activity against substrates with Arg, preferably, or Lys at the P1 position, comparable to trypsin. An enzymatically inactive recombinant granzyme A, with the active site Ser mutated to Ala, was produced and used with affinity chromatography to identify potential substrates. Two granzyme A-binding cytoplasmic proteins of molecular mass 33 and 44 kDa were isolated and identified by tryptic fragment sequencing as PHAP I and II, ubiquitous putative HLA-associated proteins, previously coisolated by binding to an HLA class II peptide. PHAP II forms an SDS-stable complex with recombinant mutant granzyme A and coprecipitates with it from cytoplasmic extracts. PHAP II, either purified or in cell lysates, is cleaved by the recombinant enzyme at nanomolar concentrations to a 25-kDa fragment. PHAP II begins to be degraded within minutes of initiation of cytotoxic T lymphocyte attack. PHAP I and II are candidate participants in the granzyme A pathway of cell-mediated cytotoxicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanisms that cause aging are not well understood. The oxidative stress hypothesis proposes that the changes associated with aging are a consequence of random oxidative damage to biomolecules. We hypothesized that oxidation of specific proteins is critical in controlling the rate of the aging process. Utilizing an immunochemical probe for oxidatively modified proteins, we show that mitochondrial aconitase, an enzyme in the citric acid cycle, is a specific target during aging of the housefly. The oxidative damage detected immunochemically was paralleled by a loss of catalytic activity of aconitase, an enzyme activity that is critical in energy metabolism. Experimental manipulations which decrease aconitase activity should therefore cause a decrease in life-span. This expected decrease was observed when flies were exposed to hyperoxia, which oxidizes aconitase, and when they were given fluoroacetate, an inhibitor of aconitase. The identification of a specific target of oxidative damage during aging allows for the assessment of the physiological age of a specific individual and provides a method for the evaluation of treatments designed to affect the aging process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein kinase C (PKC) isoforms, α, βI, and γ of cPKC subgroup, δ and ɛ of nPKC subgroup, and ζ of aPKC subgroup, were tyrosine phosphorylated in COS-7 cells in response to H2O2. These isoforms isolated from the H2O2-treated cells showed enhanced enzyme activity to various extents. The enzymes, PKC α and δ, recovered from the cells were independent of lipid cofactors for their catalytic activity. Analysis of mutated molecules of PKC δ showed that tyrosine residues, which are conserved in the catalytic domain of the PKC family, are critical for PKC activation induced by H2O2. These results suggest that PKC isoforms can be activated through tyrosine phosphorylation in a manner unrelated to receptor-coupled hydrolysis of inositol phospholipids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Angiostatin, a potent naturally occurring inhibitor of angiogenesis and growth of tumor metastases, is generated by cancer-mediated proteolysis of plasminogen. Human prostate carcinoma cells (PC-3) release enzymatic activity that converts plasminogen to angiostatin. We have now identified two components released by PC-3 cells, urokinase (uPA) and free sulfhydryl donors (FSDs), that are sufficient for angiostatin generation. Furthermore, in a defined cell-free system, plasminogen activators [uPA, tissue-type plasminogen activator (tPA), or streptokinase], in combination with one of a series of FSDs (N-acetyl-l-cysteine, d-penicillamine, captopril, l-cysteine, or reduced glutathione] generate angiostatin from plasminogen. An essential role of plasmin catalytic activity for angiostatin generation was identified by using recombinant mutant plasminogens as substrates. The wild-type recombinant plasminogen was converted to angiostatin in the setting of uPA/FSD; however, a plasminogen activation site mutant and a catalytically inactive mutant failed to generate angiostatin. Cell-free derived angiostatin inhibited angiogenesis in vitro and in vivo and suppressed the growth of Lewis lung carcinoma metastases. These findings define a direct mechanism for cancer-cell-mediated angiostatin generation and permit large-scale production of bioactive angiostatin for investigation and potential therapeutic application.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have used in vitro evolution to probe the relationship between stability and activity in a mesophilic esterase. Previous studies of these properties in homologous enzymes evolved for function at different temperatures have suggested that stability at high temperatures is incompatible with high catalytic activity at low temperatures through mutually exclusive demands on enzyme flexibility. Six generations of random mutagenesis, recombination, and screening stabilized Bacillus subtilis p-nitrobenzyl esterase significantly (>14°C increase in Tm) without compromising its catalytic activity at lower temperatures. Furthermore, analysis of the stabilities and activities of large numbers of random mutants indicates that these properties are not inversely correlated. Although enhanced thermostability does not necessarily come at the cost of activity, the process by which the molecule adapts is important. Mutations that increase thermostability while maintaining low-temperature activity are very rare. Unless both properties are constrained (by natural selection or screening) the evolution of one by the accumulation of single amino acid substitutions typically comes at the cost of the other, regardless of whether the two properties are inversely correlated or not correlated at all.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fatty acid synthesis in chloroplasts is regulated by light. The synthesis of malonyl-CoA, which is catalyzed by acetyl-CoA carboxylase (ACCase) and is the first committed step, is modulated by light/dark. Plants have ACCase in plastids and the cytosol. To determine the possible involvement of a redox cascade in light/dark modulation of ACCase, the effect of DTT, a known reductant of S-S bonds, was examined in vitro for the partially purified ACCase from pea plant. Only the plastidic ACCase was activated by DTT. This enzyme was activated in vitro more efficiently by reduced thioredoxin, which is a transducer of redox potential during illumination, than by DTT alone. Chloroplast thioredoxin-f activated the enzyme more efficiently than thioredoxin-m. The ACCase also was activated by thioredoxin reduced enzymatically with NADPH and NADP-thioredoxin reductase. These findings suggest that the reduction of ACCase is needed for activation of the enzyme, and a redox potential generated by photosynthesis is involved in its activation through thioredoxin as for enzymes of the reductive pentose phosphate cycle. The catalytic activity of ACCase was maximum at pH 8 and 2–5 mM Mg2+, indicating that light-produced changes in stromal pH and Mg2+ concentration modulate ACCase activity. These results suggest that light directly modulates a regulatory site of plastidic prokaryotic form of ACCase via a signal transduction pathway of a redox cascade and indirectly modulates its catalytic activity via stromal pH and Mg2+ concentration. A redox cascade is likely to link between light and fatty acid synthesis, resulting in coordination of fatty acid synthesis with photosynthesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antigenic peptide loading of major histocompatibility complex class II molecules is enhanced by lysosomal pH and catalyzed by the HLA-DM molecule. The physical mechanism behind the catalytic activity of DM was investigated by using time-resolved fluorescence anisotropy (TRFA) and fluorescence binding studies with the dye 8-anilino-1-naphthalenesulfonic acid (ANS). We demonstrate that the conformations of both HLA-DM and HLA-DR3, irrespective of the composition of bound peptide, are pH sensitive. Both complexes reversibly expose more nonpolar regions upon protonation. Interaction of DM with DR shields these hydrophobic domains from the aqueous environment, leading to stabilization of the DM and DR conformations. At lysosomal pH, the uncovering of additional hydrophobic patches leads to a more extensive DM–DR association. We propose that DM catalyzes class II peptide loading by stabilizing the low-pH conformation of DR, favoring peptide exchange. The DM–DR association involves a larger hydrophobic surface area with DR/class II-associated invariant chain peptides (CLIP) than with stable DR/peptide complexes, explaining the preferred association of DM with the former. The data support a release mechanism of DM from the DM–DR complex through reduction of the interactive surface, upon binding of class II molecules with antigenic peptide or upon neutralization of the DM–DR complex at the cell surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A pleiotropic cytokine, tumor necrosis factor-α (TNFα), regulates the expression of multiple macrophage gene products and thus contributes a key role in host defense. In this study, we have investigated the specificity and mechanism of activation of members of the c-Jun-NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) subfamily of mitogen-activated protein kinases (MAPKs) in mouse macrophages in response to stimulation with TNFα. Exposure of macrophages to TNFα stimulated a preferential increase in catalytic activity of the p46 JNK/SAPK isoform compared with the p54 JNK/SAPK isoform as determined by: (i) separation of p46 and p54 JNK/SAPKs by anion exchange liquid chromatography and (ii) selective immunodepletion of the p46 JNK/SAPK from macrophage lysates. To investigate the level of regulation of p46 JNK/SAPK activation, we determined the ability of MKK4/SEK1/JNKK, an upstream regulator of JNK/SAPKs, to phosphorylate recombinant kinase-inactive p46 and p54 JNK/SAPKs. Endogenous MKK4 was able to transphosphorylate both isoforms. In addition, both the p46 and p54 JNK/SAPK isoforms were phosphorylated on their TPY motif in response to TNFα stimulation as reflected by immunoblotting with a phospho-specific antibody that recognizes both kinases. Collectively, these results suggest that the level of control of p46 JNK/SAPK activation is distal not only to MKK4 but also to the p54 JNK/SAPK. Preferential isoform activation within the JNK/SAPK subfamily of MAPKs may be an important mechanism through which TNFα regulates macrophage phenotypic heterogeneity and differentiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Steroids produced locally in brain (neurosteroids), including dehydroepiandrosterone (DHEA), influence cognition and behavior. We previously described a novel cytochrome P450, Cyp7b, strongly expressed in rat and mouse brain, particularly in hippocampus. Cyp7b is most similar to steroidogenic P450s and potentially could play a role in neurosteroid metabolism. To examine the catalytic activity of the enzyme mouse Cyp7b cDNA was introduced into a vaccinia virus vector. Extracts from cells infected with the recombinant showed NADPH-dependent conversion of DHEA (Km, 13.6 μM) and pregnenolone (Km, 4.0 μM) to slower migrating forms on thin layer chromatography. The expressed enzyme was less active against 25-hydroxycholesterol, 17β-estradiol and 5α-androstane-3β,17β-diol, with low to undetectable activity against progesterone, corticosterone, and testosterone. On gas chromatography and mass spectrometry of the Cyp7b metabolite of DHEA the retention time and fragmentation patterns were identical to those obtained with authentic 7α-hydroxy DHEA. The reaction product also comigrated on thin layer chromatography with 7α-hydroxy DHEA but not with 7β-hydroxy DHEA; when [7α-3H]pregnenolone was incubated with Cyp7b extracts the extent of release of radioactivity into the medium suggested that hydroxylation was preferentially at the 7α position. Brain extracts also efficiently liberated tritium from [7α-3H]pregnenolone and converted DHEA to a product with a chromatographic mobility indistinguishable from 7α-hydroxy DHEA. We conclude that Cyp7b is a 7α-hydroxylase participating in the synthesis, in brain, of neurosteroids 7α-hydroxy DHEA, and 7α-hydroxy pregnenolone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Like most proteins, complex RNA molecules often are modular objects made up of distinct structural and functional domains. The component domains of a protein can associate in alternative combinations to form molecules with different functions. These observations raise the possibility that complex RNAs also can be assembled from preexisting structural and functional domains. To test this hypothesis, an in vitro evolution procedure was used to isolate a previously undescribed class of complex ligase ribozymes, starting from a pool of 1016 different RNA molecules that contained a constant region derived from a large structural domain that occurs within self-splicing group I ribozymes. Attached to this constant region were three hypervariable regions, totaling 85 nucleotides, that gave rise to the catalytic motif within the evolved catalysts. The ligase ribozymes catalyze formation of a 3′,5′-phosphodiester linkage between adjacent template-bound oligonucleotides, one bearing a 3′ hydroxyl and the other a 5′ triphosphate. Ligation occurs in the context of a Watson–Crick duplex, with a catalytic rate of 0.26 min−1 under optimal conditions. The constant region is essential for catalytic activity and appears to retain the tertiary structure of the group I ribozyme. This work demonstrates that complex RNA molecules, like their protein counterparts, can share common structural domains while exhibiting distinct catalytic functions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipoprotein lipase (LPL) is the central enzyme in plasma triglyceride hydrolysis. In vitro studies have shown that LPL also can enhance lipoprotein uptake into cells via pathways that are independent of catalytic activity but require LPL as a molecular bridge between lipoproteins and proteoglycans or receptors. To investigate whether this bridging function occurs in vivo, two transgenic mouse lines were established expressing a muscle creatine kinase promoter-driven human LPL (hLPL) minigene mutated in the catalytic triad (Asp156 to Asn). Mutated hLPL was expressed only in muscle and led to 3,100 and 3,500 ng/ml homodimeric hLPL protein in post-heparin plasma but no hLPL catalytic activity. Less than 5 ng/ml hLPL was found in preheparin plasma, indicating that proteoglycan binding of mutated LPL was not impaired. Expression of inactive LPL did not rescue LPL knock-out mice from neonatal death. On the wild-type (LPL2) background, inactive LPL decreased very low density lipoprotein (VLDL)-triglycerides. On the heterozygote LPL knock-out background (LPL1) background, plasma triglyceride levels were lowered 22 and 33% in the two transgenic lines. After injection of radiolabeled VLDL, increased muscle uptake was observed for triglyceride-derived fatty acids (LPL2, 1.7×; LPL1, 1.8×), core cholesteryl ether (LPL2, 2.3×; LPL1, 2.7×), and apolipoprotein (LPL1, 1.8×; significantly less than cholesteryl ether). Skeletal muscle from transgenic lines had a mitochondriopathy with glycogen accumulation similar to mice expressing active hLPL in muscle. In conclusion, it appears that inactive LPL can act in vivo to mediate VLDL removal from plasma and uptake into tissues in which it is expressed.