21 resultados para Carcinoma, squamous cell
Resumo:
Stats1 and 3 (signal transducers and activators of transcription) can be activated simultaneously, although not necessarily to the same degree or duration, by the interaction of cells with the same polypeptide ligand (EGF, PDGF, or high concentrations of IL-6, for example). However, these two Stat proteins can mediate opposing effects on cell growth and survival. Stat1 activation slows growth and promotes apoptosis. In contrast, activated Stat3 can protect cells from apoptosis. Furthermore, a constitutively active form of Stat3, Stat3-C (bridged by S-S linkages between cysteines instead of phosphotyrosines) can induce cellular transformation of fibroblasts. We have determined that fibroblasts transformed by Stat3-C are more resistant to proapoptotic stimuli than nontransformed cells. Also, to examine the potential opposing roles in apoptosis of Stat1 and Stat3, we studied the cervical carcinoma-derived cell line, Me180, which undergoes Stat1-dependent, IFNγ-induced apoptosis. Me180 cells that express Stat3-C are protected against IFNγ-mediated apoptosis.
Resumo:
The abundant chromosome abnormalities in most carcinomas are probably a reflection of genomic instability present in the tumor, so the pattern and variability of chromosome abnormalities will reflect the mechanism of instability combined with the effects of selection. Chromosome rearrangement was investigated in 17 colorectal carcinoma-derived cell lines. Comparative genomic hybridization showed that the chromosome changes were representative of those found in primary tumors. Spectral karyotyping (SKY) showed that translocations were very varied and mostly unbalanced, with no translocation occurring in more than three lines. At least three karyotype patterns could be distinguished. Some lines had few chromosome abnormalities: they all showed microsatellite instability, the replication error (RER)+ phenotype. Most lines had many chromosome abnormalities: at least seven showed a surprisingly consistent pattern, characterized by multiple unbalanced translocations and intermetaphase variation, with chromosome numbers around triploid, 6–16 structural aberrations, and similarities in gains and losses. Almost all of these were RER−, but one, LS411, was RER+. The line HCA7 showed a novel pattern, suggesting a third kind of genomic instability: multiple reciprocal translocations, with little numerical change or variability. This line was also RER+. The coexistence in one tumor of two kinds of genomic instability is to be expected if the underlying defects are selected for in tumor evolution.
Resumo:
In prostanoid biosynthesis, the first two steps are catalyzed by cyclooxygenases (COX). In mice and humans, deregulated expression of COX-2, but not of COX-1, is characteristic of epithelial tumors, including squamous cell carcinomas of skin. To explore the function of COX-2 in epidermis, a keratin 5 promoter was used to direct COX-2 expression to the basal cells of interfollicular epidermis and the pilosebaceous appendage of transgenic mouse skin. COX-2 overexpression in the expected locations, resulting in increased prostaglandin levels in epidermis and plasma, correlated with a pronounced skin phenotype. Heterozygous transgenic mice exhibited a reduced hair follicle density. Moreover, postnatally hair follicle morphogenesis and thinning of interfollicular dorsal epidermis were delayed. Adult transgenics showed a body-site-dependent sparse coat of greasy hair, the latter caused by sebaceous gland hyperplasia and increased epicutaneous sebum levels. In tail skin, hyperplasia of scale epidermis reflecting an increased number of viable and cornified cell layers was observed. Hyperplasia was a result of a disturbed program of epidermal differentiation rather than an increased proliferation rate, as reflected by the strong suppression of keratin 10, involucrin, and loricrin expression in suprabasal cells. Further pathological signs were loss of cell polarity, mainly of basal keratinocytes, epidermal invaginations into the dermis, and formation of horn perls. Invaginating hyperplastic lobes were surrounded by CD31-positive vessels. These results demonstrate a causal relationship between transgenic COX-2 expression in basal keratinocytes and epidermal hyperplasia as well as dysplastic features at discrete body sites.
Resumo:
Superantigens, such as staphylococcal enterotoxin B (SEB), elicit a strong proliferative response in T cells when presented in the context of major histocompatibility complex (MHC) class II molecules. We observed a similar T-cell response, when MHC class II-negative epidermal cell lines were employed as antigen-presenting cells. Immunoprecipitation studies indicated that the ligand to which SEB bound had a molecular mass of 46 kDa. Radiolabeled SEB could be immunoprecipitated from isolated membrane proteins on the SCC13 epidermal cell line with a monoclonal antibody directed against the MHC class I molecule, and transfection of the K-562 cell line with MHC class I molecules showed a 75% increased SEB-binding capacity compared with the nontransfected MHC class I- and class II-negative counterpart. In functional studies, antibodies to the MHC class I molecule inhibited T-cell proliferation by at least 50%. From these studies, we conclude that MHC class I molecules on malignant squamous cell carcinomas serve as ligands for SEB, which, given the appropriate costimulatory signals, is sufficient to allow for superantigen-induced T-cell proliferation.
Resumo:
Exposure of A431 squamous and MDA-MB-231 mammary carcinoma cells to ionizing radiation has been associated with short transient increases in epidermal growth factor receptor (EGFR) tyrosine phosphorylation and activation of the mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) pathways. Irradiation (2 Gy) of A431 and MDA-MB-231 cells caused immediate primary activations (0–10 min) of the EGFR and the MAPK and JNK pathways, which were surprisingly followed by later prolonged secondary activations (90–240 min). Primary and secondary activation of the EGFR was abolished by molecular inhibition of EGFR function. The primary and secondary activation of the MAPK pathway was abolished by molecular inhibition of either EGFR or Ras function. In contrast, molecular inhibition of EGFR function abolished the secondary but not the primary activation of the JNK pathway. Inhibition of tumor necrosis factor α receptor function by use of neutralizing monoclonal antibodies blunted primary activation of the JNK pathway. Addition of a neutralizing monoclonal antibody versus transforming growth factor α (TGFα) had no effect on the primary activation of either the EGFR or the MAPK and JNK pathways after irradiation but abolished the secondary activation of EGFR, MAPK, and JNK. Irradiation of cells increased pro-TGFα cleavage 120–180 min after exposure. In agreement with radiation-induced release of a soluble factor, activation of the EGFR and the MAPK and JNK pathways could be induced in nonirradiated cells by the transfer of media from irradiated cells 120 min after irradiation. The ability of the transferred media to cause MAPK and JNK activation was blocked when media were incubated with a neutralizing antibody to TGFα. Thus radiation causes primary and secondary activation of the EGFR and the MAPK and JNK pathways in autocrine-regulated carcinoma cells. Secondary activation of the EGFR and the MAPK and JNK pathways is dependent on radiation-induced cleavage and autocrine action of TGFα. Neutralization of TGFα function by an anti-TGFα antibody or inhibition of MAPK function by MEK1/2 inhibitors (PD98059 and U0126) radiosensitized A431 and MDA-MB-231 cells after irradiation in apoptosis, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), and clonogenic assays. These data demonstrate that disruption of the TGFα–EGFR–MAPK signaling module represents a strategy to decrease carcinoma cell growth and survival after irradiation.
Resumo:
We investigated the role of the cdk inhibitor protein p21Cip-1/WAF1/MDA6 (p21) in the ability of MAPK pathway inhibition to enhance radiation-induced apoptosis in A431 squamous carcinoma cells. In carcinoma cells, ionizing radiation (2 Gy) caused both primary (0–10 min) and secondary (90–240 min) activations of the MAPK pathway. Radiation induced p21 protein expression in A431 cells within 6 h via secondary activation of the MAPK pathway. Within 6 h, radiation weakly enhanced the proportion of cells in G1 that were p21 and MAPK dependent, whereas the elevation of cells present in G2/M at this time was independent of either p21 expression or MAPK inhibition. Inhibition of the MAPK pathway increased the proportion of irradiated cells in G2/M phase 24–48 h after irradiation and enhanced radiation-induced apoptosis. This correlated with elevated Cdc2 tyrosine 15 phosphorylation, decreased Cdc2 activity, and decreased Cdc25C protein levels. Caffeine treatment or removal of MEK1/2 inhibitors from cells 6 h after irradiation reduced the proportion of cells present in G2/M phase at 24 h and abolished the ability of MAPK inhibition to potentiate radiation-induced apoptosis. These data argue that MAPK signaling plays an important role in the progression/release of cells through G2/M phase after radiation exposure and that an impairment of this progression/release enhances radiation-induced apoptosis. Surprisingly, the ability of irradiation/MAPK inhibition to increase the proportion of cells in G2/M at 24 h was found to be dependent on basal p21 expression. Transient inhibition of basal p21 expression increased the control level of apoptosis as well as the abilities of both radiation and MEK1/2 inhibitors to cause apoptosis. In addition, loss of basal p21 expression significantly reduced the capacity of MAPK inhibition to potentiate radiation-induced apoptosis. Collectively, our data argue that MAPK signaling and p21 can regulate cell cycle checkpoint control in carcinoma cells at the G1/S transition shortly after exposure to radiation. In contrast, inhibition of MAPK increases the proportion of irradiated cells in G2/M, and basal expression of p21 is required to maintain this effect. Our data suggest that basal and radiation-stimulated p21 may play different roles in regulating cell cycle progression that affect cell survival after radiation exposure.