37 resultados para Calcium-binding


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influx of calcium into the postsynaptic neuron is likely to be an important event in memory formation. Among the mechanisms that nerve cells may use to alter the time course or size of a spike of intracellular calcium are cytosolic calcium binding or "buffering" proteins. To consider the role in memory formation of one of these proteins, calbindin D28K, which is abundant in many neurons, including the CA1 pyramidal cells of the hippocampus, transgenic mice deficient in calbindin D28K have been created. These mice show selective impairments in spatial learning paradigms and fail to maintain long-term potentiation. These results suggest a role for calbindin D28K protein in temporally extending a neuronal calcium signal, allowing the activation of calcium-dependent intracellular signaling pathways underlying memory function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Overactivation of calcium-activated neutral protease (calpain) has been implicated in the pathophysiology of several degenerative conditions, including stroke, myocardial ischemia, neuromuscular degeneration, and cataract formation. Alpha-mercaptoacrylate derivatives (exemplified by PD150606), with potent and selective inhibitory actions against calpain, have been identified. PD150606 exhibits the following characteristics: (i) Ki values for mu- and m-calpains of 0.21 microM and 0.37 microM, respectively, (ii) high specificity for calpains relative to other proteases, (iii) uncompetitive inhibition with respect to substrate, and (iv) it does not shield calpain against inactivation by the active-site inhibitor trans-(epoxysuccinyl)-L-leucyl-amido-3-methylbutane, suggesting a nonactive site action for PD150606. The recombinant calcium-binding domain from each of the large or small subunits of mu-calpain was found to interact with PD150606. In low micromolar range, PD15O6O6 inhibited calpain activity in two intact cell systems. The neuroprotective effects of this class of compound were also demonstrated by the ability of PD150606 to attenuate hypoxic/hypoglycemic injury to cerebrocortical neurons in culture and excitotoxic injury to Purkinje cells in cerebellar slices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calbindin-D28K and/or parvalbumin appear to influence the selective vulnerability of motoneurons in amyotrophic lateral sclerosis (ALS). Their immunoreactivity is undetectable in motoneurons readily damaged in human ALS, and in differentiated motoneuron hybrid cells [ventral spinal cord (VSC 4.1 cells)] that undergo calcium-dependent apoptotic cell death in the presence of ALS immunoglobulins. To provide additional evidence for the role of calcium-binding proteins in motoneuron vulnerability, VSC 4.1 cells were infected with a retrovirus carrying calbindin-D28K cDNA under the control of the promoter of the phosphoglycerate kinase gene. Differentiated calbindin-D28K cDNA-infected cells expressed high calbindin-D28K and demonstrated increased resistance to ALS IgG-mediated toxicity. Treatment with calbindin-D28K antisense oligodeoxynucleotides, which significantly decreased calbindin-D28K expression, rendered these cells vulnerable again to ALS IgG toxicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) of regenerating urodele limbs have been suggested to play crucial roles in the process of the dedifferentiation of cells in the damaged tissues and the ensuing blastema formation because the activation of MMPs is an early and conspicuous event occurring in the amputated limb. MMP cDNAs were cloned as products of the reverse transcription-PCR from cDNA libraries of newt limbs, and their structures were characterized. Three cDNAs encoding newt MMPs (2D-1, 2D-19, and 2D-24) have been cloned from second day postamputation regenerating limbs, and a cDNA (EB-1) was cloned from early bud-stage regenerating limbs. These cDNAs included the full-length coding regions. The deduced amino acid sequences of 2D-1, 2D-19, 2D-24, and EB-1 had a homology with mammalian MMP9, MMP3/10, MMP3/10, and MMP13, respectively. The basic motif of these newt MMP genes was similar to mammalian counterparts and contained regions encoding a putative signal sequence, a propeptide, an active site with three zinc-binding histidine residues, a calcium-binding domain, a hemopexin region, and three key cysteine residues. However, some unique molecular evolutionary features were also found in the newt MMPs. cDNAs of 2D-19 and 2D-24 contained a specific insertion and deletion, respectively. The insertion of 2D-19 is threonine-rich, similar to the threonine cluster found in the collagenase-like sea urchin hatching enzyme. Northern blot analysis showed that the expression levels of the newt MMPs were dramatically increased after amputation, suggesting that they play an important role(s) in tissue remodeling of the regenerating limb.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Organelles in the axoplasm from the squid giant axon move along exogenous actin filaments toward their barbed ends. An approximately 235-kDa protein, the only band recognized by a pan-myosin antibody in Western blots of isolated axoplasmic organelles, has been previously proposed to be a motor for these movements. Here, we purify this approximately 235-kDa protein (p235) from axoplasm and demonstrate that it is a myosin, because it is recognized by a pan-myosin antibody and has an actin-activated Mg-ATPase activity per mg of protein 40-fold higher than that of axoplasm. By low-angle rotary shadowing, p235 differs from myosin II and it does not form bipolar filaments in low salt. The amino acid sequence of a 17-kDa protein that copurifies with p235 shows that it is a squid optic lobe calcium-binding protein, which is more similar by amino acid sequence to calmodulin (69% identity) than to the light chains of myosin II (33% identity). A polyclonal antibody to this light chain was raised by using a synthetic peptide representing the calcium binding domain least similar to calmodulin. We then cloned this light chain by reverse transcriptase-PCR and showed that this antibody recognizes the bacterially expressed protein but not brain calmodulin. In Western blots of sucrose gradient fractions, the 17-kDa protein is found in the organelle fraction, suggesting that it is a light chain of the p235 myosin that is also associated with organelles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synaptic vesicle membrane protein synaptotagmin (tagmin) is essential for fast, calcium-dependent, neurotransmitter release and is likely to be the calcium sensor for exocytosis, because of its many calcium-dependent properties. Polyphosphoinositides are needed for exocytosis, but it has not been known why. We now provide a possible connection between these observations with the finding that the C2B domain of tagmin I binds phosphatidylinositol-4,5-bisphosphate (PIns-4,5-P2), its isomer phosphatidylinositol-3,4-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate (PIns-3,4,5-P3). Calcium ions switch the specificity of this binding from PIns-3,4,5-P3 (at calcium concentrations found in resting nerve terminals) to PIns-4,5-P2 (at concentration of calcium required for transmitter release). Inositol polyphosphates, known blockers of neurotransmitter release, inhibit the binding of both PIns-4,5-P2 and PIns-3,4,5-P3 to tagmin. Our findings imply that tagmin may operate as a bimodal calcium sensor, switching bound lipids during exocytosis. This connection to polyphosphoinositides, compounds whose levels are physiologically regulated, could be important for long-term memory and learning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A variety of GTP-binding protein (G protein)-coupled receptors are expressed at the nerve terminals of central synapses and play modulatory roles in transmitter release. At the calyx of Held, a rat auditory brainstem synapse, activation of presynaptic γ-aminobutyric acid type B receptors (GABAB receptors) or metabotropic glutamate receptors inhibits presynaptic P/Q-type Ca2+ channel currents via activation of G proteins, thereby attenuating transmitter release. To identify the heterotrimeric G protein subunits involved in this presynaptic inhibition, we loaded G protein βγ subunits (Gβγ) directly into the calyceal nerve terminal through whole-cell patch pipettes. Gβγ slowed the activation of presynaptic Ca2+ currents (IpCa) and attenuated its amplitude in a manner similar to the externally applied baclofen, a GABAB receptor agonist. The effects of both Gβγ and baclofen were relieved after strong depolarization of the nerve terminal. In addition, Gβγ partially occluded the inhibitory effect of baclofen on IpCa. In contrast, guanosine 5′-O-(3-thiotriphosphate)-bound Goα loaded into the calyx had no effect. Immunocytochemical examination revealed that the subtype of G proteins Go, but not the Gi, subtype, is expressed in the calyceal nerve terminal. These results suggest that presynaptic inhibition mediated by G protein-coupled receptors occurs primarily by means of the direct interaction of Go βγ subunits with presynaptic Ca2+ channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cAMP response element-binding protein (CREB) is an activity-dependent transcription factor that is involved in neural plasticity. The kinetics of CREB phosphorylation have been suggested to be important for gene activation, with sustained phosphorylation being associated with downstream gene expression. If so, the duration of CREB phosphorylation might serve as an indicator for time-sensitive plastic changes in neurons. To screen for regions potentially involved in dopamine-mediated plasticity in the basal ganglia, we used organotypic slice cultures to study the patterns of dopamine- and calcium-mediated CREB phosphorylation in the major subdivisions of the striatum. Different durations of CREB phosphorylation were evoked in the dorsal and ventral striatum by activation of dopamine D1-class receptors. The same D1 stimulus elicited (i) transient phosphorylation (≤15 min) in the matrix of the dorsal striatum; (ii) sustained phosphorylation (≤2 hr) in limbic-related structures including striosomes, the nucleus accumbens, the fundus striati, and the bed nucleus of the stria terminalis; and (iii) prolonged phosphorylation (up to 4 hr or more) in cellular islands in the olfactory tubercle. Elevation of Ca2+ influx by stimulation of L-type Ca2+ channels, NMDA, or KCl induced strong CREB phosphorylation in the dorsal striatum but not in the olfactory tubercle. These findings differentiate the response of CREB to dopamine and calcium signals in different striatal regions and suggest that dopamine-mediated CREB phosphorylation is persistent in limbic-related regions of the neonatal basal ganglia. The downstream effects activated by persistent CREB phosphorylation may include time-sensitive neuroplasticity modulated by dopamine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light triggers the phototransduction cascade by activating the visual pigment rhodopsin (Rho → Rho*). Phosphorylation of Rho* by rhodopsin kinase (RK) is necessary for the fast recovery of sensitivity after intense illumination. Ca2+ ions, acting through Ca2+-binding proteins, have been implicated in the desensitization of phototransduction. One such protein, recoverin, has been proposed to regulate RK activity contributing to adaptation to background illumination in retinal photoreceptor cells. In this report, we describe an in vitro assay system using isolated retinas that is well suited for a variety of biochemical assays, including assessing Ca2+ effects on Rho* phosphorylation. Pieces of bovine retina with intact rod outer segments were treated with pore-forming staphylococcal α-toxin, including an α-toxin mutant that forms pores whose permeability is modulated by Zn2+. The pores formed through the plasma membranes of rod cells permit the diffusion of small molecules <2 kDa but prevent the loss of proteins, including recoverin (25 kDa). The selective permeability of these pores was confirmed by using the small intracellular tracer N-(2-aminoethyl) biotinamide hydrochloride. Application of [γ-32P]ATP to α-toxin-treated, isolated retina allowed us to monitor and quantify phosphorylation of Rho*. Under various experimental conditions, including low and high [Ca2+]free, the same level of Rho* phosphorylation was measured. No differences were observed between low and high [Ca2+]free conditions, even when rods were loaded with ATP and the pores were closed by Zn2+. These results suggest that under physiological conditions, Rho* phosphorylation is insensitive to regulation by Ca2+ and Ca2+-binding proteins, including recoverin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formation and discharge of dense-core secretory vesicles depend on controlled rearrangement of the core proteins during their assembly and dispersal. The ciliate Tetrahymena thermophila offers a simple system in which the mechanisms may be studied. Here we show that most of the core consists of a set of polypeptides derived proteolytically from five precursors. These share little overall amino acid identity but are nonetheless predicted to have structural similarity. In addition, sites of proteolytic processing are notably conserved and suggest that specific endoproteases as well as carboxypeptidase are involved in core maturation. In vitro binding studies and sequence analysis suggest that the polypeptides bind calcium in vivo. Core assembly and postexocytic dispersal are compartment-specific events. Two likely regulatory factors are proteolytic processing and exposure to calcium. We asked whether these might directly influence the conformations of core proteins. Results using an in vitro chymotrypsin accessibility assay suggest that these factors can induce sequential structural rearrangements. Such progressive changes in polypeptide folding may underlie the mechanisms of assembly and of rapid postexocytic release. The parallels between dense-core vesicles in different systems suggest that similar mechanisms are widespread in this class of organelles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calreticulin (CRT) is a high-capacity, low-affinity Ca2+-binding protein located in the lumen of the endoplasmic reticulum (ER) of all eukaryotic cells investigated so far. Its high level of conservation among different species suggests that it serves functions fundamental to cell survival. The role originally proposed for CRT, i.e., the main Ca2+ buffer of the ER, has been obscured or even casted by its implication in processes as diverse as gene expression, protein folding, and cell adhesion. In this work we seek the role of CRT in Ca2+ storing and signaling by evaluating its effects on the kinetics and amplitude of the store-operated Ca2+ current (ICRAC). We show that, in the rat basophilic leukemia cell line RBL-1, overexpression of CRT, but not of its mutant lacking the high-capacity Ca2+-binding domain, markedly retards the ICRAC development, however, only when store depletion is slower than the rate of current activation. On the contrary, when store depletion is rapid and complete, overexpression of CRT has no effect. The present results are compatible with a major Ca2+-buffering role of CRT within the ER but exclude a direct, or indirect, role of this protein on the mechanism of ICRAC activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pretreatment of intact rabbit portal vein smooth muscle with the chimeric toxin DC3B (10−6 M, 48 h; Aullo et al., 1993; Boquet et al. 1995) ADP-ribosylated endogenous RhoA, including cytosolic RhoA complexed with rhoGDI, and inhibited the tonic phase of phenylephrine-induced contraction and the Ca2+-sensitization of force by phenylephrine, endothelin and guanosine triphosphate (GTP)γS, but did not inhibit Ca2+-sensitization by phorbol dibutyrate. DC3B also inhibited GTPγS-induced translocation of cytosolic RhoA (Gong et al., 1997a) to the membrane fraction. In DC3B-treated muscles the small fraction of membrane-associated RhoA could be immunoprecipitated, even after exposure to GTPγS, which prevents immunoprecipitation of non-ADP–ribosylated RhoA. Dissociation of cytosolic RhoA–rhoGDI complexes with SDS restored the immunoprecipitability and ADP ribosylatability of RhoA, indicating that both the ADP-ribosylation site (Asn 41) and RhoA insert loop (Wei et al., 1997) are masked by rhoGDI and that the long axes of the two proteins are in parallel in the heterodimer. We conclude that RhoA plays a significant role in G-protein-, but not protein kinase C-mediated, Ca2+ sensitization and that ADP ribosylation inhibits in vivo the Ca2+-sensitizing effect of RhoA by interfering with its binding to a membrane-associated effector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bruton’s tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase that is crucial for human and murine B cell development, and its deficiency causes human X-linked agammaglobulinemia and murine X-linked immunodeficiency. In this report, we describe the function of the Btk-binding protein Sab (SH3-domain binding protein that preferentially associates with Btk), which we reported previously as a newly identified Src homology 3 domain-binding protein. Sab was shown to inhibit the auto- and transphosphorylation activity of Btk, which prompted us to propose that Sab functions as a transregulator of Btk. Forced overexpression of Sab in B cells led to the reduction of B cell antigen receptor-induced tyrosine phosphorylation of Btk and significantly reduced both early and late B cell antigen receptor-mediated events, including calcium mobilization, inositol 1,4,5-trisphosphate production, and apoptotic cell death, where the involvement of Btk activity has been demonstrated previously. Together, these results indicate the negative regulatory role of Sab in the B cell cytoplasmic tyrosine kinase pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Submillimolar levels of calcium, similar to the physiological total (bound + free) intranuclear concentration (0.01–1 mM), induced a conformational change within d(TG/AC)n, one of the frequent dinucleotide repeats of the mammalian genome. This change is calcium-specific, because no other tested cation induced it and it was detected as a concentration-dependent transition from B- to a non-B-DNA conformation expanding from 3′ end toward the 5′ of the repeat. Genomic footprinting of various rat brain regions revealed the existence of similar non-B-DNA conformation within a d(TG/AC)28 repeat of the endogenous enkephalin gene only in enkephalin-expressing caudate nucleus and not in the nonexpressing thalamus. Binding assays demonstrated that DNA could bind calcium and can compete with calmodulin for calcium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FKBP12, the 12-kDa FK506-binding protein, is a ubiquitous abundant protein that acts as a receptor for the immunosuppressant drug FK506, binds tightly to intracellular calcium release channels and to the transforming growth factor β (TGF-β) type I receptor. We now demonstrate that cells from FKBP12-deficient (FKBP12−/−) mice manifest cell cycle arrest in G1 phase and that these cells can be rescued by FKBP12 transfection. This arrest is mediated by marked augmentation of p21(WAF1/CIP1) levels, which cannot be further augmented by TGF-β1. The p21 up-regulation and cell cycle arrest derive from the overactivity of TGF-β receptor signaling, which is normally inhibited by FKBP12. Cell cycle arrest is prevented by transfection with a dominant-negative TGF-β receptor construct. TGF-β receptor signaling to gene expression can be mediated by SMAD, p38, and ERK/MAP kinase (extracellular signal-regulated kinase/mitogen-activated protein kinase) pathways. SMAD signaling is down-regulated in FKBP12−/− cells. Inhibition of ERK/MAP kinase fails to affect p21 up-regulation. By contrast, activated phosphorylated p38 is markedly augmented in FKBP12−/− cells and the p21 up-regulation is prevented by an inhibitor of p38. Thus, FKBP12 is a physiologic regulator of cell cycle acting by normally down-regulating TGF-β receptor signaling.