26 resultados para COATED LIPOSOMES
Resumo:
To achieve an efficient intracellular drug and DNA delivery, attempts were made to target microparticulate drug carriers into cytoplasm bypassing the endocytotic pathway. TAT peptides derived from the HIV-1 TAT protein facilitate intracellular delivery of proteins and small colloidal particles. We demonstrated that relatively large drug carriers, such as 200-nm liposomes, can also be delivered into cells by TAT peptide attached to the liposome surface. Liposomes were fluorescently labeled with membranotropic rhodamine-phosphatidylethanolamine or by entrapping FITC-dextran. Incubation of fluorescent TAT liposomes with mouse Lewis lung carcinoma cells, human breast tumor BT20 cells, and rat cardiac myocyte H9C2 results in intracellular localization of certain liposomes. Steric hindrances for TAT peptide⋅cell interaction (attachment of TAT directly to the liposome surface without spacer or the presence of a high MW polyethylene glycol on the liposome surface) abolish liposome internalization, evidencing the importance of direct contact of TAT peptide with the cell surface. Low temperature or metabolic inhibitors, sodium azide or iodoacetamide, have little influence on the translocation of TAT liposomes into cells, confirming the energy-independent character of this process. The approach may have important implications for drug delivery directly into cell cytoplasm.
Resumo:
We propose a mechanism for oligonucleotide (ODN) release from cationic lipid complexes in cells that accounts for various observations on cationic lipid-nucleic acid-cell interactions. Fluorescent confocal microscopy of cells treated with rhodamine-labeled cationic liposome/ fluorescein-labeled ODN (F-ODN) complexes show the F-ODN separates from the lipid after internalization and enters the nucleus leaving the fluorescent lipid in cytoplasmic structures. ODN displacement from the complex was studied by fluorescent resonance energy transfer. Anionic liposome compositions (e.g., phosphatidylserine) that mimic the cytoplasmic facing monolayer of the cell membrane released ODN from the complex at about a 1:1 (-/+) charge ratio. Release was independent of ionic strength and pH. Physical separation of the F-ODN from monovalent and multivalent cationic lipids was confirmed by gel electrophoresis. Fluid but not solid phase anionic liposomes are required, whereas the physical state of the cationic lipids does not effect the release. Water soluble molecules with a high negative linear charge density, dextran sulfate, or heparin also release ODN. However, ATP, spermidine, spermine, tRNA, DNA, polyglutamic acid, polylysine, bovine serum albumin, or histone did not release ODN, even at 100-fold charge excess (-/+). Based upon these results, we propose that the complex, after internalization by endocytosis, induces flip-flop of anionic lipids from the cytoplasmic facing monolayer. Anionic lipids laterally diffuse into the complex and form a charged neutralized ion-pair with the cationic lipids. This leads to displacement of the ODN from the cationic lipid and its release into the cytoplasm.
Resumo:
Intracellular transfers between membrane-bound compartments occur through vesicles that bud from a donor compartment to fuse subsequently with an acceptor membrane. We report that the membrane that delimits COP I or COP II-coated buds/vesicles from the endoplasmic reticulum and the Golgi complex has a thinner interleaflet clear space as compared with the surrounding, noncoated parental membrane. This change is compatible with a compositional change of the membrane bilayer during the budding process.
Resumo:
Antifreeze glycoproteins (AFGPs), found in the blood of polar fish at concentrations as high as 35 g/liter, are known to prevent ice crystal growth and depress the freezing temperature of the blood. Previously, Rubinsky et al. [Rubinsky, B., Mattioli, M., Arav, A., Barboni, B. & Fletcher, G. L. (1992) Am. J. Physiol. 262, R542-R545] provided evidence that AFGPs block ion fluxes across membranes during cooling, an effect that they ascribed to interactions with ion channels. We investigated the effects of AFGPs on the leakage of a trapped marker from liposomes during chilling. As these liposomes are cooled through the transition temperature, they leak approximately 50% of their contents. Addition of less than 1 mg/ml of AFGP prevents up to 100% of this leakage, both during chilling and warming through the phase transition. This is a general effect that we show here applies to liposomes composed of phospholipids with transition temperatures ranging from 12 degrees C to 41 degrees C. Because these results were obtained with liposomes composed of phospholipids alone, we conclude that the stabilizing effects of AFGPs on intact cells during chilling reported by Rubinsky et al. may be due to a nonspecific effect on the lipid components of native membranes. There are other proteins that prevent leakage, but only under specialized conditions. For instance, antifreeze proteins, bovine serum albumin, and ovomucoid all either have no effect or actually induce leakage. Following precipitation with acetone, all three proteins inhibited leakage, although not to the extent seen with AFGPs. Alternatively, there are proteins such as ovotransferrin that have no effect on leakage, either before or after acetone precipitation.
Resumo:
We have previously reported the partial purification of a 94- to 97-kDa plasma membrane protein from mouse peritoneal macrophages that binds oxidatively modified low density lipoprotein (OxLDL) and phosphatidylserine-rich liposomes. We have now identified that protein as macrosialin, a previously cloned macrophage-restricted membrane protein in the lysosomal-associated membrane protein family (mouse homologue of human CD68). Early in the course of purification of the 94- to 97-kDa protein, a new OxLDL-binding band at 190-200 kDa appeared and copurified with the 94- to 97-kDa protein. The HPLC pattern of tryptic peptides from this higher molecular mass ligand-binding band closely matched that derived from the 94- to 97-kDa band. Specifically, the same three macrosialin-derived tryptic peptides (9, 9, and 15 residues) were present in the purified 94- to 97-kDa band and in the 190- to 200-kDa band and antisera raised against peptide sequences in macrosialin recognized both bands. An antiserum against macrosialin precipitated most of the 94- to 97-kDa OxLDL-binding material. We conclude that the binding of OxLDL to mouse macrophage membranes is in part attributable to macrosialin. Our previous studies show that OxLDL competes with oxidized red blood cells and with apoptotic thymocytes for binding to mouse peritoneal macrophages. Whether macrosialin plays a role in recognition of OxLDL and oxidatively damaged cells by intact macrophages remains uncertain.
Resumo:
We have isolated a major integral membrane protein from Golgi-derived coatomer-coated vesicles. This 24-kDa protein, p24, defines a family of integral membrane proteins with homologs present in yeast and humans. In addition to sequence similarity, all p24 family members contain a motif with the characteristic heptad repeats found in coiled coils. When the yeast p24 isoform, yp24A, is knocked out in a strain defective for vesicle fusion, a dramatic reduction in the accumulation of transport vesicles is observed. Together, these results indicate a role for this protein family in the budding of coatamer-coated and other species of coated vesicles.
Resumo:
During fertilization in marine invertebrates, fusion between sperm and egg cell membranes occurs at the tip of the sperm acrosomal process. In abalone sperm the acrosomal process is coated with an 18-kDa protein. In situ, this protein has no effect on the egg vitelline envelope, but in vitro it is a potent fusagen of liposomes. Thus, the 18-kDa protein may mediate membrane fusion between the gametes, a step in gamete recognition known to restrict heterospecific fertilization in other species. The cDNA and deduced amino acid sequences of the 18-kDa protein were determined for five species of California abalone. The deduced amino acid sequences exhibit extraordinary divergence; the percent identity varies from 27% to 87%. Analysis of nucleotide substitution shows extremely high frequencies of amino acid-altering substitution compared to silent substitution, demonstrating that positive Darwinian selection promotes the divergence of this protein. However, amino acid replacement is conservative with respect to size and polarity of residue. The data support the developing idea that in free-spawning marine invertebrates, the proteins mediating fertilization may be subjected to intense, and as yet unknown, selective forces. The extraordinary divergence of fertilization proteins may be related to the establishment of barriers to heterospecific fertilization.
Resumo:
Potocytosis is an endocytic process that is specialized for the internalization of small molecules. Recent studies on the uptake of 5-methyltetrahydrofolate by the folate receptor have suggested that the glycosyl-phosphatidylinositol anchor on this protein causes it to cluster and be internalized by caveolae instead of coated pits. To test this hypothesis directly, we have constructed a chimeric folate receptor that has the glycosyl-phosphatidylinositol anchor replaced with the transmembrane domain and cytoplasmic tail of the low density lipoprotein receptor. The cells with wild-type receptors delivered 5-methyltetrahydrofolate to the cytoplasm more rapidly than did cells expressing the chimeric receptor. This suggests that efficient delivery to the cytoplasm depends on caveolae. In sharp contrast to cells with wild-type folate receptors, cells internalizing folate by clathrin-coated pits were unable to decrease vitamin uptake when they were either folate replete or confluent.
Resumo:
Antisense oligodeoxyribonucleotides targeted to the epidermal growth factor (EGF) receptor were encapsulated into liposomes linked to folate via a polyethylene glycol spacer (folate-PEG-liposomes) and efficiently delivered into cultured KB cells via folate receptor-mediated endocytosis. The oligonucleotides were a phosphodiester 15-mer antisense to the EGF receptor (EGFR) gene stop codon (AEGFR2), the same sequence with three phosphorothioate linkages at each terminus (AEGFR2S), a randomized 15-mer control of similar base composition to AEGFR2 (RC15), a 14-mer control derived from a symmetrized Escherichia coli lac operator (LACM), and the 5'-fluorescein-labeled homologs of several of the above. Cellular uptake of AEGFR2 encapsulated in folate-PEG-liposomes was nine times higher than AEGFR2 encapsulated in nontargeted liposomes and 16 times higher than unencapsulated AEGFR2. Treatment of KB cells with AEGFR2 in folate-PEG-liposomes resulted in growth inhibition and significant morphological changes. Curiously, AEGFR2 and AEGFR2S encapsulated in folate-PEG-liposomes exhibited virtually identical growth inhibitory effects, reducing KB cell proliferation by > 90% 48 hr after the cells were treated for 4 hr with 3 microM oligonucleotide. Free AEGFR2 caused almost no growth inhibition, whereas free AEGFR2S was only one-fifth as potent as the folate-PEG-liposome-encapsulated oligonucleotide. Growth inhibition of the oligonucleotide-treated cells was probably due to reduced EGFR expression because indirect immunofluorescence staining of the cells with a monoclonal antibody against the EGFR showed an almost quantitative reduction of the EGFR in cells treated with folate-PEG-liposome-entrapped AEGFR2. These results suggest that antisense oligonucleotide encapsulation in folate-PEG-liposomes promise efficient and tumor-specific delivery and that phosphorothioate oligonucleotides appear to offer no major advantage over native phosphodiester DNA when delivered by this route.