20 resultados para Bryant, Clarence


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acclimation of photosynthesis to elevated CO2 has previously been shown to be more pronounced when N supply is poor. Is this a direct effect of N or an indirect effect of N by limiting the development of sinks for photoassimilate? This question was tested by growing a perennial ryegrass (Lolium perenne) in the field under elevated (60 Pa) and current (36 Pa) partial pressures of CO2 (pCO2) at low and high levels of N fertilization. Cutting of this herbage crop at 4- to 8-week intervals removed about 80% of the canopy, therefore decreasing the ratio of photosynthetic area to sinks for photoassimilate. Leaf photosynthesis, in vivo carboxylation capacity, carbohydrate, N, ribulose-1,5-bisphosphate carboxylase/oxygenase, sedoheptulose-1,7-bisphosphatase, and chloroplastic fructose-1,6-bisphosphatase levels were determined for mature lamina during two consecutive summers. Just before the cut, when the canopy was relatively large, growth at elevated pCO2 and low N resulted in significant decreases in carboxylation capacity and the amount of ribulose-1,5-bisphosphate carboxylase/oxygenase protein. In high N there were no significant decreases in carboxylation capacity or proteins, but chloroplastic fructose-1,6-bisphosphatase protein levels increased significantly. Elevated pCO2 resulted in a marked and significant increase in leaf carbohydrate content at low N, but had no effect at high N. This acclimation at low N was absent after the harvest, when the canopy size was small. These results suggest that acclimation under low N is caused by limitation of sink development rather than being a direct effect of N supply on photosynthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants that have been wounded by insects or other herbivores may be more susceptible to infection by adventitious microbes. Wound-induced signal molecules, which serve to induce responses in the plant that retard further feeding, might also act to prepare a plant for possible pathogen attack. We have examined the effect of a wound-generated systemic messenger (systemin) on a pathogen-stimulated defense-response marker, the oxidative burst. We observed that neither systemin nor its inactive analog (A-17) was able to directly induce H2O2 biosynthesis in suspension-cultured tomato (Lycopersicon esculentum L.) cells, regardless of the duration of exposure of the cells to the two peptides. Similarly, neither systemin nor A-17 was capable of modifying an oligogalacturonide-elicited oxidative burst, as long as elicitor addition occurred within minutes of treatment with systemin or A-17. In contrast, preexposure of the cell cultures to systemin (but not to A-17) led to a time-dependent enhancement of the oligogalacturonide-elicited oxidative burst. By 12 h of exposure, the H2O2 biosynthetic capacity of systemin-treated cells exceeded that of the control cells by a factor of 16 ± 2. A similar up-regulation by systemin of a mechanically stimulated oxidative burst was also observed. Because the systemin-induced augmentation in oxidant synthesis is quantitatively prevented by coincubation with 2 μm cycloheximide, and because the oxidative burst of oligogalacturonic acid-elicited control cells (no systemin exposure) is unaffected by preincubation with cycloheximide, we conclude that systemin enhancement of the tomato-cell oxidative burst requires protein synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of abscisic acid (ABA) on the accumulation of proteinase inhibitors I (Inh I) and II (Inh II) in young, excised tomato (Lycopersicon esculentum L.) plants were investigated. When supplied to excised plants through the cut stems, 100 μm ABA induced the activation of the ABA-responsive le4 gene. However, under the same conditions of assay, ABA at concentrations of up to 100 μm induced only low levels of proteinase-inhibitor proteins or mRNAs, compared with levels induced by systemin or jasmonic acid over the 24 h following treatment. In addition, ABA only weakly induced the accumulation of mRNAs of several other wound-response proteins. Assays of the ABA concentrations in leaves following wounding indicated that the ABA levels increased preferentially near the wound site, suggesting that ABA may have accumulated because of desiccation. The evidence suggests that ABA is not a component of the wound-inducible signal transduction pathway leading to defense gene activation but is likely involved in the general maintenance of a healthy plant physiology that facilitates a normal wound response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the in vivo efficacy of a systemic gene transfer method, which combines a liposomal delivery system (DLS liposomes) with episomally replicative DNA plasmids to effect long-term expression of a transgene in cells. A single i.v. injection of a plasmid DNA vector containing the luciferase gene as a marker was administered with the DLS liposomes in BALB/c mice. The luciferase gene and its product were found in all mouse tissues tested as determined by PCR analysis and immunohistochemistry. Luciferase activity was also detected in all tissues tested and was present in lung, liver, spleen, and heart up to 3 months postinjection. In contrast to the nonepisomal vectors tested (pRSV-luc and pCMVintlux), human papovavirus (BKV)-derived episomal vectors showed long-term transgene expression. We found that these episomal vectors replicated extrachromosomally in lung 2 weeks postinjection. Results indicated that transgene expression in specific tissues depended on the promoter element used, DNA/liposome formulation, dose of DNA per injection, and route of administration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Administration of Escherichia coli lipopolysaccharide (LPS; 10 mg/kg i.v.) to male Wistar rats caused within 240 min (i) a sustained fall (approximately 30 mmHg) in mean arterial blood pressure, (ii) a reduction (> 75%) in the pressor responses to norepinephrine (1 microgram/kg i.v.), and (iii) an induction of nitric oxide synthase (iNOS) as measured in the lung. Dexamethasone (1 mg/kg i.p. at 2 h prior to LPS) attenuated the hypotension and the vascular hyporeactivity to norepinephrine and reduced (by approximately 77%) the expression of iNOS in the lung. These effects of dexamethasone were prevented by pretreatment of LPS-treated rats with a neutralizing antiserum to lipocortin 1 (anti-LC1; 60 mg/kg s.c. at 24 h prior to LPS) but not by a control nonimmune sheep serum. Stimulation of J774.2 macrophages with LPS (1 microgram/ml for 24 h) caused the expression of iNOS and cyclooxygenase 2 (COX-2) protein and significantly increased nitrite generation; this was prevented by dexamethasone (0.1 microM at 1 h prior to LPS), which also increased cell surface lipocortin 1. Pretreatment of J774.2 cells with anti-LC1 (1:60 dilution at 4 h prior to LPS) also abolished the inhibitory effect of dexamethasone on iNOS expression and nitrite accumulation but not that on COX-2 expression. A lipocortin 1 fragment (residues 1-188 of human lipocortin 1; 20 micrograms/ml at 1 h prior to LPS) also blocked iNOS in J774.2 macrophages activated by LPS (approximately 78% inhibition), and this too was prevented by anti-LC1. We conclude that the extracellular release of endogenous lipocortin 1 (i) mediates the inhibition by dexamethasone of the expression of iNOS, but not of COX-2, and (ii) contributes substantially to the beneficial actions of dexamethasone in rats with endotoxic shock.