17 resultados para Biological clock


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interlocked feedback loops may represent a common feature among the regulatory systems controlling circadian rhythms. The Neurospora circadian feedback loops involve white collar-1 (wc-1), wc-2, and frequency (frq) genes. We show that WC-1 and WC-2 proteins activate the transcription of frq gene, whereas FRQ protein plays dual roles: repressing its own transcription, probably by interacting with the WC-1/WC-2 complex, and activating the expression of both WC proteins. Thus, they form two interlocked feedback loops: one negative and one positive. We establish the physiological significance of the interlocked positive feedback loops by showing that the levels of WC-1 and WC-2 determine the robustness and stability of the clock. Our data demonstrate that with WC-1 being the limiting factor in the WC-1/WC-2 complex, the greater the levels of WC-1 and WC-2, the higher the level of the FRQ oscillation and the more robust the overt rhythms. Our data also show that, despite considerable changes in the levels of WC-1, WC-2, and FRQ, the period of the clock has been limited to a small range, suggesting that the interlocked circadian feedback loops are also important for determining the circadian period length of the clock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chicken pineal gland contains the autonomous circadian oscillator together with the photic-input pathway. We searched for chicken pineal genes that are induced by light in a time-of-day-dependent manner, and isolated chicken homolog of bZIP transcription factor E4bp4 (cE4bp4) showing high similarity to vrille, one of the Drosophila clock genes. cE4bp4 was expressed rhythmically in the pineal gland with a peak at very early (subjective) night under both 12-h light/12-h dark cycle and constant dark conditions, and the phase was nearly opposite to the expression rhythm of cPer2, a chicken pineal clock gene. Luciferase reporter gene assays showed that cE4BP4 represses cPer2 promoter through a E4BP4-recognition sequence present in the 5′-flanking region, indicating that cE4BP4 can down-regulate the chick pineal cPer2 expression. In vivo light-perturbation studies showed that the prolongation of the light period to early subjective night maintained the high level expression of the pineal cE4bp4, and presumably as a consequence delayed the onset of the induction of the pineal cPer2 expression in the next morning. These light-dependent changes in the mRNA levels of the pineal cE4bp4 and cPer2 were followed by a phase-delay of the subsequent cycles of cE4bp4/cPer2 expression, suggesting that cE4BP4 plays an important role in the phase-delaying process as a light-dependent suppressor of cPer2 gene.