17 resultados para Biological Exposure Limits


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The zinc metallopeptidase neurolysin is shown by x-ray crystallography to have large structural elements erected over the active site region that allow substrate access only through a deep narrow channel. This architecture accounts for specialization of this neuropeptidase to small bioactive peptide substrates without bulky secondary and tertiary structures. In addition, modeling studies indicate that the length of a substrate N-terminal to the site of hydrolysis is restricted to approximately 10 residues by the limited size of the active site cavity. Some structural elements of neurolysin, including a five-stranded β-sheet and the two active site helices, are conserved with other metallopeptidases. The connecting loop regions of these elements, however, are much extended in neurolysin, and they, together with other open coil elements, line the active site cavity. These potentially flexible elements may account for the ability of the enzyme to cleave a variety of sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chloroplast-targeted overexpression of an Fe superoxide dismutase (SOD) from Arabidopsis thaliana resulted in substantially increased foliar SOD activities. Ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase activities were similar in the leaves from all of the lines, but dehydroascorbate reductase activity was increased in the leaves of the FeSOD transformants relative to untransformed controls. Foliar H2O2, ascorbate, and glutathione contents were comparable in all lines of plants. Irradiance-dependent changes in net CO2 assimilation and chlorophyll a fluorescence quenching parameters were similar in all lines both in air (21% O2) and at low (1%) O2. CO2-response curves for photosynthesis showed similar net CO2-exchange characteristics in all lines. In contrast, values of photochemical quenching declined in leaves from untransformed controls at intercellular CO2 (Ci) values below 200 μL L−1 but remained constant with decreasing Ci in leaves of FeSOD transformants. When the O2 concentration was decreased from 21 to 1%, the effect of FeSOD overexpression on photochemical quenching at limiting Ci was abolished. At high light (1000 μmol m−2 s−1) a progressive decrease in the ratio of variable (Fv) to maximal (Fm) fluorescence was observed with decreasing temperature. At 6oC the high-light-induced decrease in the Fv/Fm ratio was partially prevented by low O2 but values were comparable in all lines. Methyl viologen caused decreased Fv/Fm ratios, but this was less marked in the FeSOD transformants than in the untransformed controls. These observations suggest that the rate of superoxide dismutation limits flux through the Mehler-peroxidase cycle in certain conditions.