22 resultados para BENT METALLOCENES
Resumo:
The crystal structure at 2.0-Å resolution of an 81-residue N-terminal fragment of muscle α-tropomyosin reveals a parallel two-stranded α-helical coiled-coil structure with a remarkable core. The high alanine content of the molecule is clustered into short regions where the local 2-fold symmetry is broken by a small (≈1.2-Å) axial staggering of the helices. The joining of these regions with neighboring segments, where the helices are in axial register, gives rise to specific bends in the molecular axis. We observe such bends to be widely distributed in two-stranded α-helical coiled-coil proteins. This asymmetric design in a dimer of identical (or highly similar) sequences allows the tropomyosin molecule to adopt multiple bent conformations. The seven alanine clusters in the core of the complete molecule (which spans seven monomers of the actin helix) promote the semiflexible winding of the tropomyosin filament necessary for its regulatory role in muscle contraction.
Resumo:
DNA is bent when complexed with certain proteins. We are exploring the hypothesis that asymmetric neutralization of phosphate charges will cause the DNA double helix to collapse toward the neutralized face. We have previously shown that DNA spontaneously bends toward one face of the double helix when it is partially substituted with neutral methylphosphonate linkages. We have now synthesized DNA duplexes in which cations are tethered by hexamethylene chains near specific phosphates. Electrophoretic phasing experiments demonstrate that tethering six ammonium ions on one helical face causes DNA to bend by approximately 5 degrees toward that face, in qualitative agreement with predictions. Ion pairing between tethered cations and DNA phosphates provides a new model for simulating the electrostatic consequences of phosphate neutralization by proteins.
Resumo:
Very-long-baseline radio interferometry images of the nuclear region of the nearby spiral galaxy M81 reveal the most compact galactic core outside the Galaxy of which the size has been determined: 700 x 300 astronomical units (AU). The observations exclude a starburst or supernova interpretation for the core. Instead they favor an active galactic nucleus. There is evidence for a northeastern jet bent by approximately 35 degrees over a length scale from 700 to 4000 AU. The jet is, on average, directed toward an extended emission region, probably a radio lobe, about 1 kiloparsec (kpc) away from the core. A corresponding emission region was found in the southwest at a distance of only 30 pc from the core. The observed jet is extremely stable and likely to be associated with a steady-state channel. There is no detectable motion along the jet beyond the nominal value of -60 +/- 60 km.s-1. The level of activities in the core region of M81 is intermediate between that of SgrA* and that of powerful radio galaxies and quasars.
Resumo:
VLBI observations of the extremely gamma-bright blazar PKS 0528+134 at 8, 22, 43, and 86 GHz reveal a strongly bent one-sided-core jet structure with at least three moving and two apparently stationary jet components. At the highest observing frequencies the brightest and most compact jet component (the VLBI core) is unresolved with an upper limit to its size of approximately 50 microarcsec corresponding to approximately 0.2 parsec [H0 = 100 km.s-1.Mpc-1 (megaparsec-1), q0 = 0.5, where H0 is Hubble constant and q0 is the deceleration parameter]. Two 86-GHz VLBI observations performed in 1993.3 and 1994.0 reveal a new jet component emerging with superluminal speed from the core. Linear back-extrapolation of its motion yields strong evidence that the ejection of this component is related to an outburst in the millimeter regime and a preceding intense flare of the gamma-flux density observed in early 1993. This and the radio/optical "light curves" and VLBI data for two other sources (S5 0836+710 and 3C 454.3) suggest that the observed gamma-radiation might be Doppler-boosted and perhaps is closely related to the physical processes acting near the "base" of the highly relativistic jets observed in quasars.
A single-stranded DNA binding protein binds the origin of replication of the duplex kinetoplast DNA.
Resumo:
Replication of the kinetoplast DNA (kDNA) minicircle of trypanosomatids initiates at a conserved 12-nt sequence, 5'-GGGGTTGGTGTA-3', termed the universal minicircle sequence (UMS). A sequence-specific single-stranded DNA-binding protein from Crithidia fasciculata binds the heavy strand of the 12-mer UMS. Whereas this UMS-binding protein (UMSBP) does not bind a duplex UMS dodecamer, it binds the double-stranded kDNA minicircle as well as a duplex minicircle fragment containing the origin-associated UMS. Binding of the minicircle origin region by the single-stranded DNA binding protein suggested the local unwinding of the DNA double helix at this site. Modification of thymine residues at this site by KMnO4 revealed that the UMS resides within an unwound or otherwise sharply distorted DNA at the minicircle origin region. Computer analysis predicts the sequence-directed curving of the minicircle origin region. Electrophoresis of a minicircle fragment containing the origin region in polyacrylamide gels revealed a significantly lower electrophoretic mobility than expected from its length. The fragment anomalous electrophoretic mobility is displayed only in its native conformation and is dependent on temperature and gel porosity, indicating the local curving of the DNA double helix. We suggest that binding of UMSBP at the minicircle origin of replication is possible through local unwinding of the DNA double helix at the UMS site. It is hypothesized here that this local melting is initiated through the untwisting of unstacked dinucleotide sequences at the bent origin site.
Resumo:
Hereditary deficiency of factor IXa (fIXa), a key enzyme in blood coagulation, causes hemophilia B, a severe X chromosome-linked bleeding disorder afflicting 1 in 30,000 males; clinical studies have identified nearly 500 deleterious variants. The x-ray structure of porcine fIXa described here shows the atomic origins of the disease, while the spatial distribution of mutation sites suggests a structural model for factor X activation by phospholipid-bound fIXa and cofactor VIIIa. The 3.0-A-resolution diffraction data clearly show the structures of the serine proteinase module and the two preceding epidermal growth factor (EGF)-like modules; the N-terminal Gla module is partially disordered. The catalytic module, with covalent inhibitor D-Phe-1I-Pro-2I-Arg-3I chloromethyl ketone, most closely resembles fXa but differs significantly at several positions. Particularly noteworthy is the strained conformation of Glu-388, a residue strictly conserved in known fIXa sequences but conserved as Gly among other trypsin-like serine proteinases. Flexibility apparent in electron density together with modeling studies suggests that this may cause incomplete active site formation, even after zymogen, and hence the low catalytic activity of fIXa. The principal axes of the oblong EGF-like domains define an angle of 110 degrees, stabilized by a strictly conserved and fIX-specific interdomain salt bridge. The disorder of the Gla module, whose hydrophobic helix is apparent in electron density, can be attributed to the absence of calcium in the crystals; we have modeled the Gla module in its calcium form by using prothrombin fragment 1. The arched module arrangement agrees with fluorescence energy transfer experiments. Most hemophilic mutation sites of surface fIX residues occur on the concave surface of the bent molecule and suggest a plausible model for the membrane-bound ternary fIXa-FVIIIa-fX complex structure: fIXa and an equivalently arranged fX arch across an underlying fVIIIa subdomain from opposite sides; the stabilizing fVIIIa interactions force the catalytic modules together, completing fIXa active site formation and catalytic enhancement.
Resumo:
In the presence of m-xylene, the Pu promoter of the TOL plasmid of Pseudomonas putida is activated by the prokaryotic enhancer-binding protein XylR. The intervening DNA segment between the upstream activating sequences (UASs) and those for RNA polymerase binding contains an integration host factor (IHF) attachment site that is required for full transcriptional activity. In the absence of IHF, the Pu promoter can be cross-activated by other members of the sigma 54-dependent family of regulatory proteins. Such illegitimate activation does not require the binding of the heterologous regulators to DNA and it is suppressed by bent DNA structures, either static or protein induced, between the promoter core elements (UAS and RNA polymerase recognition sequence). The role of IHF in some sigma 54 promoters is, therefore, not only a structural aid for assembling a correct promoter geometry but also that of an active suppressor (restrictor) of promiscuous activation by heterologous regulators for increased promoter specificity.