17 resultados para Atomic and Ionic Dynamics in Laser
Resumo:
Anti-viral drug treatment of human immunodeficiency virus type I (HIV-1) and hepatitis B virus (HBV) infections causes rapid reduction in plasma virus load. Viral decline occurs in several phases and provides information on important kinetic constants of virus replication in vivo and pharmacodynamical properties. We develop a mathematical model that takes into account the intracellular phase of the viral life-cycle, defined as the time between infection of a cell and production of new virus particles. We derive analytic solutions for the dynamics following treatment with reverse transcriptase inhibitors, protease inhibitors, or a combination of both. For HIV-1, our results show that the phase of rapid decay in plasma virus (days 2-7) allows precise estimates for the turnover rate of productively infected cells. The initial quasi-stationary phase (days 0-1) and the transition phase (days 1-2) are explained by the combined effects of pharmacological and intracellular delays, the clearance of free virus particles, and the decay of infected cells. Reliable estimates of the first three quantities are not possible from data on virus load only; such estimates require additional measurements. In contrast with HIV-1, for HBV our model predicts that frequent early sampling of plasma virus will lead to reliable estimates of the free virus half-life and the pharmacological properties of the administered drug. On the other hand, for HBV the half-life of infected cells cannot be estimated from plasma virus decay.
Resumo:
Chronic rejection, the most important cause of long-term graft failure, is thought to result from both alloantigen-dependent and -independent factors. To examine these influences, cytokine dynamics were assessed by semiquantitative competitive reverse transcriptase-PCR and by immunohistology in an established rat model of chronic rejection lf renal allografts. Isograft controls develop morphologic and immunohistologic changes that are similar to renal allograft changes, although quantitatively less intense and at a delayed speed; these are thought to occur secondary to antigen-independent events. Sequential cytokine expression was determined throughout the process. During an early reversible allograft rejection episode, both T-cell associated [interleukin (IL) 2, IL-2 receptor, IL-4, and interferon gamma] and macrophage (IL-1 alpha, tumor necrosis factor alpha, and IL-6) products were up-regulated despite transient immunosuppression. RANTES (regulated upon activation, normal T-cell expressed and secreted) peaked at 2 weeks; intercellular adhesion molecule (ICAM-1) was maximally expressed at 6 weeks. Macrophage products such as monocyte chemoattractant protein (MCP-1) increased dramatically (to 10 times), presaging intense peak macrophage infiltration at 16 weeks. In contrast, in isografts, ICAM-1 peaked at 24 weeks. MCP-1 was maximally expressed at 52 weeks, commensurate with a progressive increase in infiltrating macrophages. Cytokine expression in the spleen of allograft and isograft recipients was insignificant. We conclude that chronic rejection of kidney allografts in rats is predominantly a local macrophage-dependent event with intense up-regulation of macrophage products such as MCP-1, IL-6, and inducible nitric oxide synthase. The cytokine expression in isografts emphasizes the contribution of antigen-independent events. The dynamics of RANTES expression between early and late phases of chronic rejection suggest a key role in mediating the events of the chronic process.