21 resultados para Aquatic humic substance
Resumo:
During male gonadal development Müllerian duct regression is mediated by the actions of the hormone Müllerian inhibiting substance (MIS), a member of the transforming growth factor beta superfamily. MIS is considered to be unique among members of this superfamily because bioactivation of MIS via proteolytic processing is hypothesized to occur at its target organ, the Müllerian duct. We find instead that the majority of MIS is processed and secreted from the embryonic testes as a complex in which the mature region remains noncovalently associated with the prodomain. In addition, we have identified two candidate endoproteases that are expressed in the testes and that may be capable of processing MIS in vivo. These kex2/subtilisin-like enzymes, PC5 and furin, are members of the proprotein convertase family that have been implicated in hormone bioactivation via proteolytic processing after dibasic amino acid cleavage recognition sites. Coexpression of PC5 and MIS in transfected mammalian cells results in efficient processing and bioactivation of MIS. Our results suggest that MIS is a natural substrate for PC5, thereby supporting a role for prohormone convertases in the activation of transforming growth factor beta-related hormones during development.
Resumo:
We have used a pharmacologic mediator to open intercellular connections in selected vessels to allow liposomes to escape from the blood stream and to extravasate into tissues that have appropriate receptors. We have examined the effects of substance P (SP), a peptide known to increase vascular permeability in selected tissues, such as trachea, esophagus, and urinary bladder in rats. We used quantitative fluorescence analysis of tissues to measure two fluorescent markers, one attached to the lipid (rhodamine-phosphatidylethanolamine) and another, doxorubicin (an anti-tumor drug), encapsulated within the aqueous interior. We have also examined the deposition of liposomes microscopically by the use of encapsulated colloidal gold and silver enhancement. Analysis of the biochemical and morphological observations indicate the following: (i) Injection of SP produces a striking increase in both liposome labels, but only in tissues that possess receptors for SP in postcapillary venules; (ii) liposome material in these tissues has extravasated and is found extracellularly near a variety of cells beyond the endothelial layer over the first few hours; (iii) 24 h following injection of liposomes and SP, liposome material is found in these tissues, localized intracellularly in both endothelial cells and macrophages. We propose that appropriate application of tissue-specific mediators can result in liposome extravasation deep within tissues that normally do not take up significant amounts of liposomes from the blood. Such liposomes are able to carry a variety of pharmacological agents that can be released locally within selected target tissues for therapeutic purposes.
Resumo:
We have genetically replaced the native receptor binding domain of diphtheria toxin with an extended form of substance P (SP): SP-glycine (SP-Gly). The resulting fusion protein, DAB389SP-Gly, is composed of the catalytic and transmembrane domains of diphtheria toxin genetically coupled to SP-Gly. Because native SP requires a C-terminal amide moiety to bind with high affinity to the SP receptor, the precursor form of the fusion toxin, DAB389SP-Gly, was converted to DAB389SP by treatment with peptidylglycine-alpha-amidating monooxygenase. We demonstrate that following conversion, DAB389SP is selectively cytotoxic for cell lines that express either the rat or the human SP receptor. We also demonstrate that the cytotoxic action of DAB389SP is mediated via the SP receptor and dependent upon passage through an acidic compartment. To our knowledge, this is the first reported use of a neuropeptide as the targeting ligand for a fusion toxin; and the first instance in which an inactive precursor form of a fusion toxin is converted to the active form by a posttranslational modification.
Resumo:
The extracellular factors that determine a cell's responsiveness to neurotransmitters are of particular relevance for pharmacologically diverse cell types such as neurons and smooth muscle. We previously demonstrated that matrix-associated factors are capable of dramatically and specifically suppressing the responsiveness of smooth muscle to the neuropeptide, substance P. We now demonstrate that this influence of extracellular matrix on the pharmacological phenotype of smooth muscle cells can be blocked specifically by an Arg-Gly-Asp (RGD)-containing antagonist of integrins. Of a battery of integrin ligands tested, only thrombospondin mimicked the effect of the extracellular matrix on substance P responsiveness. This effect of thrombospondin was dose dependent, RGD sensitive, and blocked by an antibody directed against the RGD-containing region of thrombospondin. Because the mRNA for thrombospondin is present in the cells of the chicken amnion, this extracellular factor may normally suppress substance P responsiveness in amniotic smooth muscle. The results suggest a role for matrix-associated integrin ligands in the regulation of cellular responses to specific neurotransmitters and hormones and in the development and maintenance of tissue-specific pharmacological properties.
Resumo:
Substance P (SP) is a neuropeptide that mediates multiple physiological responses including transmission of painful stimuli and inflammation via an interaction with a receptor of known primary sequence. To identify the regions of the SP receptor, also termed the NK-1 receptor, involved in peptide recognition, we are using analogues of SP containing the photoreactive amino acid p-benzoyl-L-phenylalanine (Bpa). In the present study, we used radioiodinated Bpa8-SP to covalently label with high efficiency the rat SP receptor expressed in a transfected mammalian cell line. To identify the amino acid residue that serves as the site of covalent attachment, a membrane preparation of labeled receptor was subjected to partial enzymatic cleavage by trypsin. A major digestion product of 22 kDa was identified. Upon reduction with 2-mercaptoethanol the mass of this product decreased to 14 kDa. The 22-kDa tryptic fragment was purified in excellent yield by preparative SDS/PAGE under nonreducing conditions. Subcleavage with Staphylococcus aureus V8 protease and endoproteinase ArgC yielded fragments of 8.2 and 9.0 kDa, respectively. Upon reductive cleavage, the V8 protease fragment decreased to 3.0 kDa while the endoproteinase ArgC fragment decreased to 3.2 kDa. Taking into consideration enzyme specificity, molecular size, determination of the presence or absence of N-glycosylation sites, and recognition by antibodies to specific sequences of the SP receptor, the V8 protease fragment is Thr-173 to Glu-183, while the endoproteinase ArgC fragment is Val-178 to Arg-190. These two fragments share the common sequence Val-Val-Cys-Met-Ile-Glu (residues 178-183). The site of covalent attachment of radioiodinated Bpa8-SP is thus restricted to a residue within this overlap sequence. The data presented here also establish that the cysteine residue in this sequence Cys-180, which is positioned in the middle of the second extracellular loop, participates in a disulfide bond that links the first and second extracellular loops of the receptor.
Resumo:
Studies on cultured cells have shown that agonists induce several types of G protein-coupled receptors to undergo internalization. We have investigated this phenomenon in rat striatum, using substance P (SP)-induced internalization of the SP receptor (SPR) as our model system. Within 1 min of a unilateral striatal injection of SP in the anesthetized rat, nearly 60% of the SPR-immunoreactive neurons within the injection zone display massive internalization of the SPR--i.e., 20-200 SPR+ endosomes per cell body. Within the dendrites the SPR undergoes a striking translocation from the plasma membrane to endosomes, and these dendrites also undergo a morphological reorganization, changing from a structure of rather uniform diameter to one characterized by large, swollen varicosities connected by thin fibers. In both cell bodies and dendrites the number of SPR+ endosomes returns to baseline within 60 min of SP injection. The number of neurons displaying substantial endosomal SPR internalization is dependent on the concentration of injected SP, and the SP-induced SPR internalization is inhibited by the nonpeptide neurokinin 1 receptor antagonist RP-67,580. These data demonstrate that in the central nervous system in vivo, SP induces a rapid and widespread SPR internalization in the cell bodies and dendrites and a structural reorganization of the dendrites. These results suggest that many of the observations that have been made on the internalization and recycling of G protein-coupled receptors in in vitro transfected cell systems are applicable to similar events that occur in the mammalian central nervous system in vivo.